Metamath Proof Explorer


Theorem ifpim2

Description: Restate implication as conditional logic operator. (Contributed by RP, 20-Apr-2020)

Ref Expression
Assertion ifpim2 ( ( 𝜑𝜓 ) ↔ if- ( 𝜓 , ⊤ , ¬ 𝜑 ) )

Proof

Step Hyp Ref Expression
1 tru
2 1 olci ( ¬ 𝜓 ∨ ⊤ )
3 2 biantrur ( ( 𝜓 ∨ ¬ 𝜑 ) ↔ ( ( ¬ 𝜓 ∨ ⊤ ) ∧ ( 𝜓 ∨ ¬ 𝜑 ) ) )
4 imor ( ( 𝜑𝜓 ) ↔ ( ¬ 𝜑𝜓 ) )
5 orcom ( ( ¬ 𝜑𝜓 ) ↔ ( 𝜓 ∨ ¬ 𝜑 ) )
6 4 5 bitri ( ( 𝜑𝜓 ) ↔ ( 𝜓 ∨ ¬ 𝜑 ) )
7 dfifp4 ( if- ( 𝜓 , ⊤ , ¬ 𝜑 ) ↔ ( ( ¬ 𝜓 ∨ ⊤ ) ∧ ( 𝜓 ∨ ¬ 𝜑 ) ) )
8 3 6 7 3bitr4i ( ( 𝜑𝜓 ) ↔ if- ( 𝜓 , ⊤ , ¬ 𝜑 ) )