Description: Restate implication as conditional logic operator. (Contributed by RP, 20-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ifpim2 | ⊢ ( ( 𝜑 → 𝜓 ) ↔ if- ( 𝜓 , ⊤ , ¬ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru | ⊢ ⊤ | |
| 2 | 1 | olci | ⊢ ( ¬ 𝜓 ∨ ⊤ ) |
| 3 | 2 | biantrur | ⊢ ( ( 𝜓 ∨ ¬ 𝜑 ) ↔ ( ( ¬ 𝜓 ∨ ⊤ ) ∧ ( 𝜓 ∨ ¬ 𝜑 ) ) ) |
| 4 | imor | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ( ¬ 𝜑 ∨ 𝜓 ) ) | |
| 5 | orcom | ⊢ ( ( ¬ 𝜑 ∨ 𝜓 ) ↔ ( 𝜓 ∨ ¬ 𝜑 ) ) | |
| 6 | 4 5 | bitri | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ( 𝜓 ∨ ¬ 𝜑 ) ) |
| 7 | dfifp4 | ⊢ ( if- ( 𝜓 , ⊤ , ¬ 𝜑 ) ↔ ( ( ¬ 𝜓 ∨ ⊤ ) ∧ ( 𝜓 ∨ ¬ 𝜑 ) ) ) | |
| 8 | 3 6 7 | 3bitr4i | ⊢ ( ( 𝜑 → 𝜓 ) ↔ if- ( 𝜓 , ⊤ , ¬ 𝜑 ) ) |