Metamath Proof Explorer


Theorem ifpim2

Description: Restate implication as conditional logic operator. (Contributed by RP, 20-Apr-2020)

Ref Expression
Assertion ifpim2
|- ( ( ph -> ps ) <-> if- ( ps , T. , -. ph ) )

Proof

Step Hyp Ref Expression
1 tru
 |-  T.
2 1 olci
 |-  ( -. ps \/ T. )
3 2 biantrur
 |-  ( ( ps \/ -. ph ) <-> ( ( -. ps \/ T. ) /\ ( ps \/ -. ph ) ) )
4 imor
 |-  ( ( ph -> ps ) <-> ( -. ph \/ ps ) )
5 orcom
 |-  ( ( -. ph \/ ps ) <-> ( ps \/ -. ph ) )
6 4 5 bitri
 |-  ( ( ph -> ps ) <-> ( ps \/ -. ph ) )
7 dfifp4
 |-  ( if- ( ps , T. , -. ph ) <-> ( ( -. ps \/ T. ) /\ ( ps \/ -. ph ) ) )
8 3 6 7 3bitr4i
 |-  ( ( ph -> ps ) <-> if- ( ps , T. , -. ph ) )