Description: Restate implication as conditional logic operator. (Contributed by RP, 20-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | ifpim2 | |- ( ( ph -> ps ) <-> if- ( ps , T. , -. ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru | |- T. |
|
2 | 1 | olci | |- ( -. ps \/ T. ) |
3 | 2 | biantrur | |- ( ( ps \/ -. ph ) <-> ( ( -. ps \/ T. ) /\ ( ps \/ -. ph ) ) ) |
4 | imor | |- ( ( ph -> ps ) <-> ( -. ph \/ ps ) ) |
|
5 | orcom | |- ( ( -. ph \/ ps ) <-> ( ps \/ -. ph ) ) |
|
6 | 4 5 | bitri | |- ( ( ph -> ps ) <-> ( ps \/ -. ph ) ) |
7 | dfifp4 | |- ( if- ( ps , T. , -. ph ) <-> ( ( -. ps \/ T. ) /\ ( ps \/ -. ph ) ) ) |
|
8 | 3 6 7 | 3bitr4i | |- ( ( ph -> ps ) <-> if- ( ps , T. , -. ph ) ) |