Description: Restate implication as conditional logic operator. (Contributed by RP, 20-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ifpim2 | |- ( ( ph -> ps ) <-> if- ( ps , T. , -. ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru | |- T. |
|
| 2 | 1 | olci | |- ( -. ps \/ T. ) |
| 3 | 2 | biantrur | |- ( ( ps \/ -. ph ) <-> ( ( -. ps \/ T. ) /\ ( ps \/ -. ph ) ) ) |
| 4 | imor | |- ( ( ph -> ps ) <-> ( -. ph \/ ps ) ) |
|
| 5 | orcom | |- ( ( -. ph \/ ps ) <-> ( ps \/ -. ph ) ) |
|
| 6 | 4 5 | bitri | |- ( ( ph -> ps ) <-> ( ps \/ -. ph ) ) |
| 7 | dfifp4 | |- ( if- ( ps , T. , -. ph ) <-> ( ( -. ps \/ T. ) /\ ( ps \/ -. ph ) ) ) |
|
| 8 | 3 6 7 | 3bitr4i | |- ( ( ph -> ps ) <-> if- ( ps , T. , -. ph ) ) |