Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | ifpbi23 | |- ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( if- ( ta , ph , ch ) <-> if- ( ta , ps , th ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |- ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( ph <-> ps ) ) |
|
2 | simpr | |- ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( ch <-> th ) ) |
|
3 | 1 2 | ifpbi23d | |- ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( if- ( ta , ph , ch ) <-> if- ( ta , ps , th ) ) ) |