Metamath Proof Explorer


Theorem ifpbi23

Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020)

Ref Expression
Assertion ifpbi23
|- ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( if- ( ta , ph , ch ) <-> if- ( ta , ps , th ) ) )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( ph <-> ps ) )
2 simpr
 |-  ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( ch <-> th ) )
3 1 2 ifpbi23d
 |-  ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( if- ( ta , ph , ch ) <-> if- ( ta , ps , th ) ) )