Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( ph <-> ps ) ) |
2 |
1
|
imbi2d |
|- ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( ( ta -> ph ) <-> ( ta -> ps ) ) ) |
3 |
|
simpr |
|- ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( ch <-> th ) ) |
4 |
3
|
imbi2d |
|- ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( ( -. ta -> ch ) <-> ( -. ta -> th ) ) ) |
5 |
2 4
|
anbi12d |
|- ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( ( ( ta -> ph ) /\ ( -. ta -> ch ) ) <-> ( ( ta -> ps ) /\ ( -. ta -> th ) ) ) ) |
6 |
|
dfifp2 |
|- ( if- ( ta , ph , ch ) <-> ( ( ta -> ph ) /\ ( -. ta -> ch ) ) ) |
7 |
|
dfifp2 |
|- ( if- ( ta , ps , th ) <-> ( ( ta -> ps ) /\ ( -. ta -> th ) ) ) |
8 |
5 6 7
|
3bitr4g |
|- ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( if- ( ta , ph , ch ) <-> if- ( ta , ps , th ) ) ) |