Metamath Proof Explorer


Theorem ifpbiidcor

Description: Restatement of biid . (Contributed by RP, 25-Apr-2020)

Ref Expression
Assertion ifpbiidcor
|- if- ( ph , ph , -. ph )

Proof

Step Hyp Ref Expression
1 biid
 |-  ( ph <-> ph )
2 ifpdfbi
 |-  ( ( ph <-> ph ) <-> if- ( ph , ph , -. ph ) )
3 1 2 mpbi
 |-  if- ( ph , ph , -. ph )