Metamath Proof Explorer


Theorem ifpbiidcor

Description: Restatement of biid . (Contributed by RP, 25-Apr-2020)

Ref Expression
Assertion ifpbiidcor if- ( 𝜑 , 𝜑 , ¬ 𝜑 )

Proof

Step Hyp Ref Expression
1 biid ( 𝜑𝜑 )
2 ifpdfbi ( ( 𝜑𝜑 ) ↔ if- ( 𝜑 , 𝜑 , ¬ 𝜑 ) )
3 1 2 mpbi if- ( 𝜑 , 𝜑 , ¬ 𝜑 )