Metamath Proof Explorer


Theorem ifpbicor

Description: Corollary of commutation of biconditional. (Contributed by RP, 25-Apr-2020)

Ref Expression
Assertion ifpbicor ( if- ( 𝜑 , 𝜓 , ¬ 𝜓 ) ↔ if- ( 𝜓 , 𝜑 , ¬ 𝜑 ) )

Proof

Step Hyp Ref Expression
1 bicom ( ( 𝜑𝜓 ) ↔ ( 𝜓𝜑 ) )
2 ifpdfbi ( ( 𝜑𝜓 ) ↔ if- ( 𝜑 , 𝜓 , ¬ 𝜓 ) )
3 ifpdfbi ( ( 𝜓𝜑 ) ↔ if- ( 𝜓 , 𝜑 , ¬ 𝜑 ) )
4 1 2 3 3bitr3i ( if- ( 𝜑 , 𝜓 , ¬ 𝜓 ) ↔ if- ( 𝜓 , 𝜑 , ¬ 𝜑 ) )