Metamath Proof Explorer


Theorem ifpbicor

Description: Corollary of commutation of biconditional. (Contributed by RP, 25-Apr-2020)

Ref Expression
Assertion ifpbicor if-φψ¬ψif-ψφ¬φ

Proof

Step Hyp Ref Expression
1 bicom φψψφ
2 ifpdfbi φψif-φψ¬ψ
3 ifpdfbi ψφif-ψφ¬φ
4 1 2 3 3bitr3i if-φψ¬ψif-ψφ¬φ