Metamath Proof Explorer


Theorem ifpbicor

Description: Corollary of commutation of biconditional. (Contributed by RP, 25-Apr-2020)

Ref Expression
Assertion ifpbicor
|- ( if- ( ph , ps , -. ps ) <-> if- ( ps , ph , -. ph ) )

Proof

Step Hyp Ref Expression
1 bicom
 |-  ( ( ph <-> ps ) <-> ( ps <-> ph ) )
2 ifpdfbi
 |-  ( ( ph <-> ps ) <-> if- ( ph , ps , -. ps ) )
3 ifpdfbi
 |-  ( ( ps <-> ph ) <-> if- ( ps , ph , -. ph ) )
4 1 2 3 3bitr3i
 |-  ( if- ( ph , ps , -. ps ) <-> if- ( ps , ph , -. ph ) )