Metamath Proof Explorer


Theorem ifpxorcor

Description: Corollary of commutation of biconditional. (Contributed by RP, 25-Apr-2020)

Ref Expression
Assertion ifpxorcor ( if- ( 𝜑 , ¬ 𝜓 , 𝜓 ) ↔ if- ( 𝜓 , ¬ 𝜑 , 𝜑 ) )

Proof

Step Hyp Ref Expression
1 ifpbicor ( if- ( 𝜑 , ¬ 𝜓 , ¬ ¬ 𝜓 ) ↔ if- ( ¬ 𝜓 , 𝜑 , ¬ 𝜑 ) )
2 notnotb ( 𝜓 ↔ ¬ ¬ 𝜓 )
3 ifpbi3 ( ( 𝜓 ↔ ¬ ¬ 𝜓 ) → ( if- ( 𝜑 , ¬ 𝜓 , 𝜓 ) ↔ if- ( 𝜑 , ¬ 𝜓 , ¬ ¬ 𝜓 ) ) )
4 2 3 ax-mp ( if- ( 𝜑 , ¬ 𝜓 , 𝜓 ) ↔ if- ( 𝜑 , ¬ 𝜓 , ¬ ¬ 𝜓 ) )
5 ifpn ( if- ( 𝜓 , ¬ 𝜑 , 𝜑 ) ↔ if- ( ¬ 𝜓 , 𝜑 , ¬ 𝜑 ) )
6 1 4 5 3bitr4i ( if- ( 𝜑 , ¬ 𝜓 , 𝜓 ) ↔ if- ( 𝜓 , ¬ 𝜑 , 𝜑 ) )