Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 14-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ifpbi3 | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( if- ( 𝜒 , 𝜃 , 𝜑 ) ↔ if- ( 𝜒 , 𝜃 , 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi2 | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ( ¬ 𝜒 → 𝜑 ) ↔ ( ¬ 𝜒 → 𝜓 ) ) ) | |
| 2 | 1 | anbi2d | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ( ( 𝜒 → 𝜃 ) ∧ ( ¬ 𝜒 → 𝜑 ) ) ↔ ( ( 𝜒 → 𝜃 ) ∧ ( ¬ 𝜒 → 𝜓 ) ) ) ) |
| 3 | dfifp2 | ⊢ ( if- ( 𝜒 , 𝜃 , 𝜑 ) ↔ ( ( 𝜒 → 𝜃 ) ∧ ( ¬ 𝜒 → 𝜑 ) ) ) | |
| 4 | dfifp2 | ⊢ ( if- ( 𝜒 , 𝜃 , 𝜓 ) ↔ ( ( 𝜒 → 𝜃 ) ∧ ( ¬ 𝜒 → 𝜓 ) ) ) | |
| 5 | 2 3 4 | 3bitr4g | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( if- ( 𝜒 , 𝜃 , 𝜑 ) ↔ if- ( 𝜒 , 𝜃 , 𝜓 ) ) ) |