Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 14-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | ifpbi3 | |- ( ( ph <-> ps ) -> ( if- ( ch , th , ph ) <-> if- ( ch , th , ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi2 | |- ( ( ph <-> ps ) -> ( ( -. ch -> ph ) <-> ( -. ch -> ps ) ) ) |
|
2 | 1 | anbi2d | |- ( ( ph <-> ps ) -> ( ( ( ch -> th ) /\ ( -. ch -> ph ) ) <-> ( ( ch -> th ) /\ ( -. ch -> ps ) ) ) ) |
3 | dfifp2 | |- ( if- ( ch , th , ph ) <-> ( ( ch -> th ) /\ ( -. ch -> ph ) ) ) |
|
4 | dfifp2 | |- ( if- ( ch , th , ps ) <-> ( ( ch -> th ) /\ ( -. ch -> ps ) ) ) |
|
5 | 2 3 4 | 3bitr4g | |- ( ( ph <-> ps ) -> ( if- ( ch , th , ph ) <-> if- ( ch , th , ps ) ) ) |