Metamath Proof Explorer


Theorem ifpbi3

Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 14-Apr-2020)

Ref Expression
Assertion ifpbi3
|- ( ( ph <-> ps ) -> ( if- ( ch , th , ph ) <-> if- ( ch , th , ps ) ) )

Proof

Step Hyp Ref Expression
1 imbi2
 |-  ( ( ph <-> ps ) -> ( ( -. ch -> ph ) <-> ( -. ch -> ps ) ) )
2 1 anbi2d
 |-  ( ( ph <-> ps ) -> ( ( ( ch -> th ) /\ ( -. ch -> ph ) ) <-> ( ( ch -> th ) /\ ( -. ch -> ps ) ) ) )
3 dfifp2
 |-  ( if- ( ch , th , ph ) <-> ( ( ch -> th ) /\ ( -. ch -> ph ) ) )
4 dfifp2
 |-  ( if- ( ch , th , ps ) <-> ( ( ch -> th ) /\ ( -. ch -> ps ) ) )
5 2 3 4 3bitr4g
 |-  ( ( ph <-> ps ) -> ( if- ( ch , th , ph ) <-> if- ( ch , th , ps ) ) )