Metamath Proof Explorer


Theorem ifpbi3

Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 14-Apr-2020)

Ref Expression
Assertion ifpbi3 φ ψ if- χ θ φ if- χ θ ψ

Proof

Step Hyp Ref Expression
1 imbi2 φ ψ ¬ χ φ ¬ χ ψ
2 1 anbi2d φ ψ χ θ ¬ χ φ χ θ ¬ χ ψ
3 dfifp2 if- χ θ φ χ θ ¬ χ φ
4 dfifp2 if- χ θ ψ χ θ ¬ χ ψ
5 2 3 4 3bitr4g φ ψ if- χ θ φ if- χ θ ψ