Metamath Proof Explorer


Theorem ifpim1

Description: Restate implication as conditional logic operator. (Contributed by RP, 20-Apr-2020)

Ref Expression
Assertion ifpim1 φ ψ if- ¬ φ ψ

Proof

Step Hyp Ref Expression
1 tru
2 1 olci ¬ ¬ φ
3 2 biantrur ¬ φ ψ ¬ ¬ φ ¬ φ ψ
4 imor φ ψ ¬ φ ψ
5 dfifp4 if- ¬ φ ψ ¬ ¬ φ ¬ φ ψ
6 3 4 5 3bitr4i φ ψ if- ¬ φ ψ