Metamath Proof Explorer


Theorem ifpim1

Description: Restate implication as conditional logic operator. (Contributed by RP, 20-Apr-2020)

Ref Expression
Assertion ifpim1 ( ( 𝜑𝜓 ) ↔ if- ( ¬ 𝜑 , ⊤ , 𝜓 ) )

Proof

Step Hyp Ref Expression
1 tru
2 1 olci ( ¬ ¬ 𝜑 ∨ ⊤ )
3 2 biantrur ( ( ¬ 𝜑𝜓 ) ↔ ( ( ¬ ¬ 𝜑 ∨ ⊤ ) ∧ ( ¬ 𝜑𝜓 ) ) )
4 imor ( ( 𝜑𝜓 ) ↔ ( ¬ 𝜑𝜓 ) )
5 dfifp4 ( if- ( ¬ 𝜑 , ⊤ , 𝜓 ) ↔ ( ( ¬ ¬ 𝜑 ∨ ⊤ ) ∧ ( ¬ 𝜑𝜓 ) ) )
6 3 4 5 3bitr4i ( ( 𝜑𝜓 ) ↔ if- ( ¬ 𝜑 , ⊤ , 𝜓 ) )