Metamath Proof Explorer


Theorem ifpnot

Description: Restate negated wff as conditional logic operator. (Contributed by RP, 20-Apr-2020)

Ref Expression
Assertion ifpnot ( ¬ 𝜑 ↔ if- ( 𝜑 , ⊥ , ⊤ ) )

Proof

Step Hyp Ref Expression
1 tru
2 1 olci ( 𝜑 ∨ ⊤ )
3 2 biantru ( ( ¬ 𝜑 ∨ ⊥ ) ↔ ( ( ¬ 𝜑 ∨ ⊥ ) ∧ ( 𝜑 ∨ ⊤ ) ) )
4 fal ¬ ⊥
5 4 biorfi ( ¬ 𝜑 ↔ ( ¬ 𝜑 ∨ ⊥ ) )
6 dfifp4 ( if- ( 𝜑 , ⊥ , ⊤ ) ↔ ( ( ¬ 𝜑 ∨ ⊥ ) ∧ ( 𝜑 ∨ ⊤ ) ) )
7 3 5 6 3bitr4i ( ¬ 𝜑 ↔ if- ( 𝜑 , ⊥ , ⊤ ) )