Metamath Proof Explorer


Theorem ifpnot

Description: Restate negated wff as conditional logic operator. (Contributed by RP, 20-Apr-2020)

Ref Expression
Assertion ifpnot ¬φif-φ

Proof

Step Hyp Ref Expression
1 tru
2 1 olci φ
3 2 biantru ¬φ¬φφ
4 fal ¬
5 4 biorfi ¬φ¬φ
6 dfifp4 if-φ¬φφ
7 3 5 6 3bitr4i ¬φif-φ