Metamath Proof Explorer


Theorem ifpbi23

Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020)

Ref Expression
Assertion ifpbi23 ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → ( if- ( 𝜏 , 𝜑 , 𝜒 ) ↔ if- ( 𝜏 , 𝜓 , 𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → ( 𝜑𝜓 ) )
2 simpr ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → ( 𝜒𝜃 ) )
3 1 2 ifpbi23d ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → ( if- ( 𝜏 , 𝜑 , 𝜒 ) ↔ if- ( 𝜏 , 𝜓 , 𝜃 ) ) )