Metamath Proof Explorer


Theorem ifpbi23

Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020)

Ref Expression
Assertion ifpbi23 ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → ( if- ( 𝜏 , 𝜑 , 𝜒 ) ↔ if- ( 𝜏 , 𝜓 , 𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → ( 𝜑𝜓 ) )
2 1 imbi2d ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → ( ( 𝜏𝜑 ) ↔ ( 𝜏𝜓 ) ) )
3 simpr ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → ( 𝜒𝜃 ) )
4 3 imbi2d ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → ( ( ¬ 𝜏𝜒 ) ↔ ( ¬ 𝜏𝜃 ) ) )
5 2 4 anbi12d ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → ( ( ( 𝜏𝜑 ) ∧ ( ¬ 𝜏𝜒 ) ) ↔ ( ( 𝜏𝜓 ) ∧ ( ¬ 𝜏𝜃 ) ) ) )
6 dfifp2 ( if- ( 𝜏 , 𝜑 , 𝜒 ) ↔ ( ( 𝜏𝜑 ) ∧ ( ¬ 𝜏𝜒 ) ) )
7 dfifp2 ( if- ( 𝜏 , 𝜓 , 𝜃 ) ↔ ( ( 𝜏𝜓 ) ∧ ( ¬ 𝜏𝜃 ) ) )
8 5 6 7 3bitr4g ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → ( if- ( 𝜏 , 𝜑 , 𝜒 ) ↔ if- ( 𝜏 , 𝜓 , 𝜃 ) ) )