Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜒 ↔ 𝜃 ) ) → ( 𝜑 ↔ 𝜓 ) ) |
2 |
1
|
imbi2d |
⊢ ( ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜒 ↔ 𝜃 ) ) → ( ( 𝜏 → 𝜑 ) ↔ ( 𝜏 → 𝜓 ) ) ) |
3 |
|
simpr |
⊢ ( ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜒 ↔ 𝜃 ) ) → ( 𝜒 ↔ 𝜃 ) ) |
4 |
3
|
imbi2d |
⊢ ( ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜒 ↔ 𝜃 ) ) → ( ( ¬ 𝜏 → 𝜒 ) ↔ ( ¬ 𝜏 → 𝜃 ) ) ) |
5 |
2 4
|
anbi12d |
⊢ ( ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜒 ↔ 𝜃 ) ) → ( ( ( 𝜏 → 𝜑 ) ∧ ( ¬ 𝜏 → 𝜒 ) ) ↔ ( ( 𝜏 → 𝜓 ) ∧ ( ¬ 𝜏 → 𝜃 ) ) ) ) |
6 |
|
dfifp2 |
⊢ ( if- ( 𝜏 , 𝜑 , 𝜒 ) ↔ ( ( 𝜏 → 𝜑 ) ∧ ( ¬ 𝜏 → 𝜒 ) ) ) |
7 |
|
dfifp2 |
⊢ ( if- ( 𝜏 , 𝜓 , 𝜃 ) ↔ ( ( 𝜏 → 𝜓 ) ∧ ( ¬ 𝜏 → 𝜃 ) ) ) |
8 |
5 6 7
|
3bitr4g |
⊢ ( ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜒 ↔ 𝜃 ) ) → ( if- ( 𝜏 , 𝜑 , 𝜒 ) ↔ if- ( 𝜏 , 𝜓 , 𝜃 ) ) ) |