Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | ifpbi23 | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜒 ↔ 𝜃 ) ) → ( if- ( 𝜏 , 𝜑 , 𝜒 ) ↔ if- ( 𝜏 , 𝜓 , 𝜃 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜒 ↔ 𝜃 ) ) → ( 𝜑 ↔ 𝜓 ) ) | |
2 | simpr | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜒 ↔ 𝜃 ) ) → ( 𝜒 ↔ 𝜃 ) ) | |
3 | 1 2 | ifpbi23d | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜒 ↔ 𝜃 ) ) → ( if- ( 𝜏 , 𝜑 , 𝜒 ) ↔ if- ( 𝜏 , 𝜓 , 𝜃 ) ) ) |