Metamath Proof Explorer


Theorem ifpbi23

Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020)

Ref Expression
Assertion ifpbi23 φ ψ χ θ if- τ φ χ if- τ ψ θ

Proof

Step Hyp Ref Expression
1 simpl φ ψ χ θ φ ψ
2 1 imbi2d φ ψ χ θ τ φ τ ψ
3 simpr φ ψ χ θ χ θ
4 3 imbi2d φ ψ χ θ ¬ τ χ ¬ τ θ
5 2 4 anbi12d φ ψ χ θ τ φ ¬ τ χ τ ψ ¬ τ θ
6 dfifp2 if- τ φ χ τ φ ¬ τ χ
7 dfifp2 if- τ ψ θ τ ψ ¬ τ θ
8 5 6 7 3bitr4g φ ψ χ θ if- τ φ χ if- τ ψ θ