Metamath Proof Explorer


Theorem ifpimimb

Description: Factor conditional logic operator over implication in terms 2 and 3. (Contributed by RP, 21-Apr-2020)

Ref Expression
Assertion ifpimimb if-φψχθτif-φψθif-φχτ

Proof

Step Hyp Ref Expression
1 dfifp2 if-φψχθτφψχ¬φθτ
2 imor φψχ¬φψχ
3 pm4.8 φ¬φ¬φ
4 3 bicomi ¬φφ¬φ
5 4 orbi1i ¬φψχφ¬φψχ
6 id φφ
7 6 orci φφθχ
8 7 biantru φ¬φψχφ¬φψχφφθχ
9 2 5 8 3bitri φψχφ¬φψχφφθχ
10 pm4.64 ¬φθτφθτ
11 pm4.81 ¬φφφ
12 11 bicomi φ¬φφ
13 12 orbi1i φθτ¬φφθτ
14 6 orci φφψτ
15 14 biantrur ¬φφθτφφψτ¬φφθτ
16 10 13 15 3bitri ¬φθτφφψτ¬φφθτ
17 9 16 anbi12i φψχ¬φθτφ¬φψχφφθχφφψτ¬φφθτ
18 ifpim123g if-φψθif-φχτφ¬φψχφφθχφφψτ¬φφθτ
19 18 bicomi φ¬φψχφφθχφφψτ¬φφθτif-φψθif-φχτ
20 1 17 19 3bitri if-φψχθτif-φψθif-φχτ