Metamath Proof Explorer


Theorem ifpnancor

Description: Corollary of commutation of and. (Contributed by RP, 25-Apr-2020)

Ref Expression
Assertion ifpnancor if- φ ¬ ψ ¬ φ if- ψ ¬ φ ¬ ψ

Proof

Step Hyp Ref Expression
1 ifpancor if- φ ψ φ if- ψ φ ψ
2 1 notbii ¬ if- φ ψ φ ¬ if- ψ φ ψ
3 ifpnot23 ¬ if- φ ψ φ if- φ ¬ ψ ¬ φ
4 ifpnot23 ¬ if- ψ φ ψ if- ψ ¬ φ ¬ ψ
5 2 3 4 3bitr3i if- φ ¬ ψ ¬ φ if- ψ ¬ φ ¬ ψ