Metamath Proof Explorer


Theorem ifpnancor

Description: Corollary of commutation of and. (Contributed by RP, 25-Apr-2020)

Ref Expression
Assertion ifpnancor if-φ¬ψ¬φif-ψ¬φ¬ψ

Proof

Step Hyp Ref Expression
1 ifpancor if-φψφif-ψφψ
2 1 notbii ¬if-φψφ¬if-ψφψ
3 ifpnot23 ¬if-φψφif-φ¬ψ¬φ
4 ifpnot23 ¬if-ψφψif-ψ¬φ¬ψ
5 2 3 4 3bitr3i if-φ¬ψ¬φif-ψ¬φ¬ψ