Metamath Proof Explorer


Theorem ifpororb

Description: Factor conditional logic operator over disjunction in terms 2 and 3. (Contributed by RP, 21-Apr-2020)

Ref Expression
Assertion ifpororb if-φψχθτif-φψθif-φχτ

Proof

Step Hyp Ref Expression
1 dfifp2 if-φψχθτφψχ¬φθτ
2 df-or ψχ¬ψχ
3 2 imbi2i φψχφ¬ψχ
4 df-or θτ¬θτ
5 4 imbi2i ¬φθτ¬φ¬θτ
6 3 5 anbi12i φψχ¬φθτφ¬ψχ¬φ¬θτ
7 ifpimimb if-φ¬ψχ¬θτif-φ¬ψ¬θif-φχτ
8 dfifp2 if-φ¬ψχ¬θτφ¬ψχ¬φ¬θτ
9 imor if-φ¬ψ¬θif-φχτ¬if-φ¬ψ¬θif-φχτ
10 ifpnot23d ¬if-φ¬ψ¬θif-φψθ
11 10 orbi1i ¬if-φ¬ψ¬θif-φχτif-φψθif-φχτ
12 9 11 bitri if-φ¬ψ¬θif-φχτif-φψθif-φχτ
13 7 8 12 3bitr3i φ¬ψχ¬φ¬θτif-φψθif-φχτ
14 1 6 13 3bitri if-φψχθτif-φψθif-φχτ