Metamath Proof Explorer


Theorem ifpananb

Description: Factor conditional logic operator over conjunction in terms 2 and 3. (Contributed by RP, 21-Apr-2020)

Ref Expression
Assertion ifpananb if-φψχθτif-φψθif-φχτ

Proof

Step Hyp Ref Expression
1 anor ψχ¬¬ψ¬χ
2 anor θτ¬¬θ¬τ
3 ifpbi23 ψχ¬¬ψ¬χθτ¬¬θ¬τif-φψχθτif-φ¬¬ψ¬χ¬¬θ¬τ
4 1 2 3 mp2an if-φψχθτif-φ¬¬ψ¬χ¬¬θ¬τ
5 ifpororb if-φ¬ψ¬χ¬θ¬τif-φ¬ψ¬θif-φ¬χ¬τ
6 ifpnotnotb if-φ¬ψ¬θ¬if-φψθ
7 ifpnotnotb if-φ¬χ¬τ¬if-φχτ
8 6 7 orbi12i if-φ¬ψ¬θif-φ¬χ¬τ¬if-φψθ¬if-φχτ
9 5 8 bitri if-φ¬ψ¬χ¬θ¬τ¬if-φψθ¬if-φχτ
10 9 notbii ¬if-φ¬ψ¬χ¬θ¬τ¬¬if-φψθ¬if-φχτ
11 ifpnotnotb if-φ¬¬ψ¬χ¬¬θ¬τ¬if-φ¬ψ¬χ¬θ¬τ
12 anor if-φψθif-φχτ¬¬if-φψθ¬if-φχτ
13 10 11 12 3bitr4i if-φ¬¬ψ¬χ¬¬θ¬τif-φψθif-φχτ
14 4 13 bitri if-φψχθτif-φψθif-φχτ