Step |
Hyp |
Ref |
Expression |
1 |
|
anor |
⊢ ( ( 𝜓 ∧ 𝜒 ) ↔ ¬ ( ¬ 𝜓 ∨ ¬ 𝜒 ) ) |
2 |
|
anor |
⊢ ( ( 𝜃 ∧ 𝜏 ) ↔ ¬ ( ¬ 𝜃 ∨ ¬ 𝜏 ) ) |
3 |
|
ifpbi23 |
⊢ ( ( ( ( 𝜓 ∧ 𝜒 ) ↔ ¬ ( ¬ 𝜓 ∨ ¬ 𝜒 ) ) ∧ ( ( 𝜃 ∧ 𝜏 ) ↔ ¬ ( ¬ 𝜃 ∨ ¬ 𝜏 ) ) ) → ( if- ( 𝜑 , ( 𝜓 ∧ 𝜒 ) , ( 𝜃 ∧ 𝜏 ) ) ↔ if- ( 𝜑 , ¬ ( ¬ 𝜓 ∨ ¬ 𝜒 ) , ¬ ( ¬ 𝜃 ∨ ¬ 𝜏 ) ) ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( if- ( 𝜑 , ( 𝜓 ∧ 𝜒 ) , ( 𝜃 ∧ 𝜏 ) ) ↔ if- ( 𝜑 , ¬ ( ¬ 𝜓 ∨ ¬ 𝜒 ) , ¬ ( ¬ 𝜃 ∨ ¬ 𝜏 ) ) ) |
5 |
|
ifpororb |
⊢ ( if- ( 𝜑 , ( ¬ 𝜓 ∨ ¬ 𝜒 ) , ( ¬ 𝜃 ∨ ¬ 𝜏 ) ) ↔ ( if- ( 𝜑 , ¬ 𝜓 , ¬ 𝜃 ) ∨ if- ( 𝜑 , ¬ 𝜒 , ¬ 𝜏 ) ) ) |
6 |
|
ifpnotnotb |
⊢ ( if- ( 𝜑 , ¬ 𝜓 , ¬ 𝜃 ) ↔ ¬ if- ( 𝜑 , 𝜓 , 𝜃 ) ) |
7 |
|
ifpnotnotb |
⊢ ( if- ( 𝜑 , ¬ 𝜒 , ¬ 𝜏 ) ↔ ¬ if- ( 𝜑 , 𝜒 , 𝜏 ) ) |
8 |
6 7
|
orbi12i |
⊢ ( ( if- ( 𝜑 , ¬ 𝜓 , ¬ 𝜃 ) ∨ if- ( 𝜑 , ¬ 𝜒 , ¬ 𝜏 ) ) ↔ ( ¬ if- ( 𝜑 , 𝜓 , 𝜃 ) ∨ ¬ if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) |
9 |
5 8
|
bitri |
⊢ ( if- ( 𝜑 , ( ¬ 𝜓 ∨ ¬ 𝜒 ) , ( ¬ 𝜃 ∨ ¬ 𝜏 ) ) ↔ ( ¬ if- ( 𝜑 , 𝜓 , 𝜃 ) ∨ ¬ if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) |
10 |
9
|
notbii |
⊢ ( ¬ if- ( 𝜑 , ( ¬ 𝜓 ∨ ¬ 𝜒 ) , ( ¬ 𝜃 ∨ ¬ 𝜏 ) ) ↔ ¬ ( ¬ if- ( 𝜑 , 𝜓 , 𝜃 ) ∨ ¬ if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) |
11 |
|
ifpnotnotb |
⊢ ( if- ( 𝜑 , ¬ ( ¬ 𝜓 ∨ ¬ 𝜒 ) , ¬ ( ¬ 𝜃 ∨ ¬ 𝜏 ) ) ↔ ¬ if- ( 𝜑 , ( ¬ 𝜓 ∨ ¬ 𝜒 ) , ( ¬ 𝜃 ∨ ¬ 𝜏 ) ) ) |
12 |
|
anor |
⊢ ( ( if- ( 𝜑 , 𝜓 , 𝜃 ) ∧ if- ( 𝜑 , 𝜒 , 𝜏 ) ) ↔ ¬ ( ¬ if- ( 𝜑 , 𝜓 , 𝜃 ) ∨ ¬ if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) |
13 |
10 11 12
|
3bitr4i |
⊢ ( if- ( 𝜑 , ¬ ( ¬ 𝜓 ∨ ¬ 𝜒 ) , ¬ ( ¬ 𝜃 ∨ ¬ 𝜏 ) ) ↔ ( if- ( 𝜑 , 𝜓 , 𝜃 ) ∧ if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) |
14 |
4 13
|
bitri |
⊢ ( if- ( 𝜑 , ( 𝜓 ∧ 𝜒 ) , ( 𝜃 ∧ 𝜏 ) ) ↔ ( if- ( 𝜑 , 𝜓 , 𝜃 ) ∧ if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) |