Metamath Proof Explorer


Theorem ifpananb

Description: Factor conditional logic operator over conjunction in terms 2 and 3. (Contributed by RP, 21-Apr-2020)

Ref Expression
Assertion ifpananb ( if- ( 𝜑 , ( 𝜓𝜒 ) , ( 𝜃𝜏 ) ) ↔ ( if- ( 𝜑 , 𝜓 , 𝜃 ) ∧ if- ( 𝜑 , 𝜒 , 𝜏 ) ) )

Proof

Step Hyp Ref Expression
1 anor ( ( 𝜓𝜒 ) ↔ ¬ ( ¬ 𝜓 ∨ ¬ 𝜒 ) )
2 anor ( ( 𝜃𝜏 ) ↔ ¬ ( ¬ 𝜃 ∨ ¬ 𝜏 ) )
3 ifpbi23 ( ( ( ( 𝜓𝜒 ) ↔ ¬ ( ¬ 𝜓 ∨ ¬ 𝜒 ) ) ∧ ( ( 𝜃𝜏 ) ↔ ¬ ( ¬ 𝜃 ∨ ¬ 𝜏 ) ) ) → ( if- ( 𝜑 , ( 𝜓𝜒 ) , ( 𝜃𝜏 ) ) ↔ if- ( 𝜑 , ¬ ( ¬ 𝜓 ∨ ¬ 𝜒 ) , ¬ ( ¬ 𝜃 ∨ ¬ 𝜏 ) ) ) )
4 1 2 3 mp2an ( if- ( 𝜑 , ( 𝜓𝜒 ) , ( 𝜃𝜏 ) ) ↔ if- ( 𝜑 , ¬ ( ¬ 𝜓 ∨ ¬ 𝜒 ) , ¬ ( ¬ 𝜃 ∨ ¬ 𝜏 ) ) )
5 ifpororb ( if- ( 𝜑 , ( ¬ 𝜓 ∨ ¬ 𝜒 ) , ( ¬ 𝜃 ∨ ¬ 𝜏 ) ) ↔ ( if- ( 𝜑 , ¬ 𝜓 , ¬ 𝜃 ) ∨ if- ( 𝜑 , ¬ 𝜒 , ¬ 𝜏 ) ) )
6 ifpnotnotb ( if- ( 𝜑 , ¬ 𝜓 , ¬ 𝜃 ) ↔ ¬ if- ( 𝜑 , 𝜓 , 𝜃 ) )
7 ifpnotnotb ( if- ( 𝜑 , ¬ 𝜒 , ¬ 𝜏 ) ↔ ¬ if- ( 𝜑 , 𝜒 , 𝜏 ) )
8 6 7 orbi12i ( ( if- ( 𝜑 , ¬ 𝜓 , ¬ 𝜃 ) ∨ if- ( 𝜑 , ¬ 𝜒 , ¬ 𝜏 ) ) ↔ ( ¬ if- ( 𝜑 , 𝜓 , 𝜃 ) ∨ ¬ if- ( 𝜑 , 𝜒 , 𝜏 ) ) )
9 5 8 bitri ( if- ( 𝜑 , ( ¬ 𝜓 ∨ ¬ 𝜒 ) , ( ¬ 𝜃 ∨ ¬ 𝜏 ) ) ↔ ( ¬ if- ( 𝜑 , 𝜓 , 𝜃 ) ∨ ¬ if- ( 𝜑 , 𝜒 , 𝜏 ) ) )
10 9 notbii ( ¬ if- ( 𝜑 , ( ¬ 𝜓 ∨ ¬ 𝜒 ) , ( ¬ 𝜃 ∨ ¬ 𝜏 ) ) ↔ ¬ ( ¬ if- ( 𝜑 , 𝜓 , 𝜃 ) ∨ ¬ if- ( 𝜑 , 𝜒 , 𝜏 ) ) )
11 ifpnotnotb ( if- ( 𝜑 , ¬ ( ¬ 𝜓 ∨ ¬ 𝜒 ) , ¬ ( ¬ 𝜃 ∨ ¬ 𝜏 ) ) ↔ ¬ if- ( 𝜑 , ( ¬ 𝜓 ∨ ¬ 𝜒 ) , ( ¬ 𝜃 ∨ ¬ 𝜏 ) ) )
12 anor ( ( if- ( 𝜑 , 𝜓 , 𝜃 ) ∧ if- ( 𝜑 , 𝜒 , 𝜏 ) ) ↔ ¬ ( ¬ if- ( 𝜑 , 𝜓 , 𝜃 ) ∨ ¬ if- ( 𝜑 , 𝜒 , 𝜏 ) ) )
13 10 11 12 3bitr4i ( if- ( 𝜑 , ¬ ( ¬ 𝜓 ∨ ¬ 𝜒 ) , ¬ ( ¬ 𝜃 ∨ ¬ 𝜏 ) ) ↔ ( if- ( 𝜑 , 𝜓 , 𝜃 ) ∧ if- ( 𝜑 , 𝜒 , 𝜏 ) ) )
14 4 13 bitri ( if- ( 𝜑 , ( 𝜓𝜒 ) , ( 𝜃𝜏 ) ) ↔ ( if- ( 𝜑 , 𝜓 , 𝜃 ) ∧ if- ( 𝜑 , 𝜒 , 𝜏 ) ) )