| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-nan |
⊢ ( ( 𝜓 ⊼ 𝜒 ) ↔ ¬ ( 𝜓 ∧ 𝜒 ) ) |
| 2 |
|
df-nan |
⊢ ( ( 𝜃 ⊼ 𝜏 ) ↔ ¬ ( 𝜃 ∧ 𝜏 ) ) |
| 3 |
|
ifpbi23 |
⊢ ( ( ( ( 𝜓 ⊼ 𝜒 ) ↔ ¬ ( 𝜓 ∧ 𝜒 ) ) ∧ ( ( 𝜃 ⊼ 𝜏 ) ↔ ¬ ( 𝜃 ∧ 𝜏 ) ) ) → ( if- ( 𝜑 , ( 𝜓 ⊼ 𝜒 ) , ( 𝜃 ⊼ 𝜏 ) ) ↔ if- ( 𝜑 , ¬ ( 𝜓 ∧ 𝜒 ) , ¬ ( 𝜃 ∧ 𝜏 ) ) ) ) |
| 4 |
1 2 3
|
mp2an |
⊢ ( if- ( 𝜑 , ( 𝜓 ⊼ 𝜒 ) , ( 𝜃 ⊼ 𝜏 ) ) ↔ if- ( 𝜑 , ¬ ( 𝜓 ∧ 𝜒 ) , ¬ ( 𝜃 ∧ 𝜏 ) ) ) |
| 5 |
|
ifpananb |
⊢ ( if- ( 𝜑 , ( 𝜓 ∧ 𝜒 ) , ( 𝜃 ∧ 𝜏 ) ) ↔ ( if- ( 𝜑 , 𝜓 , 𝜃 ) ∧ if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) |
| 6 |
5
|
notbii |
⊢ ( ¬ if- ( 𝜑 , ( 𝜓 ∧ 𝜒 ) , ( 𝜃 ∧ 𝜏 ) ) ↔ ¬ ( if- ( 𝜑 , 𝜓 , 𝜃 ) ∧ if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) |
| 7 |
|
ifpnotnotb |
⊢ ( if- ( 𝜑 , ¬ ( 𝜓 ∧ 𝜒 ) , ¬ ( 𝜃 ∧ 𝜏 ) ) ↔ ¬ if- ( 𝜑 , ( 𝜓 ∧ 𝜒 ) , ( 𝜃 ∧ 𝜏 ) ) ) |
| 8 |
|
df-nan |
⊢ ( ( if- ( 𝜑 , 𝜓 , 𝜃 ) ⊼ if- ( 𝜑 , 𝜒 , 𝜏 ) ) ↔ ¬ ( if- ( 𝜑 , 𝜓 , 𝜃 ) ∧ if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) |
| 9 |
6 7 8
|
3bitr4i |
⊢ ( if- ( 𝜑 , ¬ ( 𝜓 ∧ 𝜒 ) , ¬ ( 𝜃 ∧ 𝜏 ) ) ↔ ( if- ( 𝜑 , 𝜓 , 𝜃 ) ⊼ if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) |
| 10 |
4 9
|
bitri |
⊢ ( if- ( 𝜑 , ( 𝜓 ⊼ 𝜒 ) , ( 𝜃 ⊼ 𝜏 ) ) ↔ ( if- ( 𝜑 , 𝜓 , 𝜃 ) ⊼ if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) |