| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-or |
⊢ ( ( if- ( 𝜑 , 𝜒 , 𝜏 ) ∨ if- ( 𝜓 , 𝜃 , 𝜂 ) ) ↔ ( ¬ if- ( 𝜑 , 𝜒 , 𝜏 ) → if- ( 𝜓 , 𝜃 , 𝜂 ) ) ) |
| 2 |
|
ifpnot23 |
⊢ ( ¬ if- ( 𝜑 , 𝜒 , 𝜏 ) ↔ if- ( 𝜑 , ¬ 𝜒 , ¬ 𝜏 ) ) |
| 3 |
2
|
imbi1i |
⊢ ( ( ¬ if- ( 𝜑 , 𝜒 , 𝜏 ) → if- ( 𝜓 , 𝜃 , 𝜂 ) ) ↔ ( if- ( 𝜑 , ¬ 𝜒 , ¬ 𝜏 ) → if- ( 𝜓 , 𝜃 , 𝜂 ) ) ) |
| 4 |
1 3
|
bitri |
⊢ ( ( if- ( 𝜑 , 𝜒 , 𝜏 ) ∨ if- ( 𝜓 , 𝜃 , 𝜂 ) ) ↔ ( if- ( 𝜑 , ¬ 𝜒 , ¬ 𝜏 ) → if- ( 𝜓 , 𝜃 , 𝜂 ) ) ) |
| 5 |
|
ifpim123g |
⊢ ( ( if- ( 𝜑 , ¬ 𝜒 , ¬ 𝜏 ) → if- ( 𝜓 , 𝜃 , 𝜂 ) ) ↔ ( ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ( ¬ 𝜒 → 𝜃 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( ¬ 𝜏 → 𝜃 ) ) ) ∧ ( ( ( 𝜑 → 𝜓 ) ∨ ( ¬ 𝜒 → 𝜂 ) ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( ¬ 𝜏 → 𝜂 ) ) ) ) ) |
| 6 |
4 5
|
bitri |
⊢ ( ( if- ( 𝜑 , 𝜒 , 𝜏 ) ∨ if- ( 𝜓 , 𝜃 , 𝜂 ) ) ↔ ( ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ( ¬ 𝜒 → 𝜃 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( ¬ 𝜏 → 𝜃 ) ) ) ∧ ( ( ( 𝜑 → 𝜓 ) ∨ ( ¬ 𝜒 → 𝜂 ) ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( ¬ 𝜏 → 𝜂 ) ) ) ) ) |
| 7 |
|
pm4.64 |
⊢ ( ( ¬ 𝜒 → 𝜃 ) ↔ ( 𝜒 ∨ 𝜃 ) ) |
| 8 |
7
|
orbi2i |
⊢ ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ( ¬ 𝜒 → 𝜃 ) ) ↔ ( ( 𝜑 → ¬ 𝜓 ) ∨ ( 𝜒 ∨ 𝜃 ) ) ) |
| 9 |
|
pm4.64 |
⊢ ( ( ¬ 𝜏 → 𝜃 ) ↔ ( 𝜏 ∨ 𝜃 ) ) |
| 10 |
9
|
orbi2i |
⊢ ( ( ( 𝜓 → 𝜑 ) ∨ ( ¬ 𝜏 → 𝜃 ) ) ↔ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜏 ∨ 𝜃 ) ) ) |
| 11 |
8 10
|
anbi12i |
⊢ ( ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ( ¬ 𝜒 → 𝜃 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( ¬ 𝜏 → 𝜃 ) ) ) ↔ ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ( 𝜒 ∨ 𝜃 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜏 ∨ 𝜃 ) ) ) ) |
| 12 |
|
pm4.64 |
⊢ ( ( ¬ 𝜒 → 𝜂 ) ↔ ( 𝜒 ∨ 𝜂 ) ) |
| 13 |
12
|
orbi2i |
⊢ ( ( ( 𝜑 → 𝜓 ) ∨ ( ¬ 𝜒 → 𝜂 ) ) ↔ ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 ∨ 𝜂 ) ) ) |
| 14 |
|
pm4.64 |
⊢ ( ( ¬ 𝜏 → 𝜂 ) ↔ ( 𝜏 ∨ 𝜂 ) ) |
| 15 |
14
|
orbi2i |
⊢ ( ( ( ¬ 𝜓 → 𝜑 ) ∨ ( ¬ 𝜏 → 𝜂 ) ) ↔ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( 𝜏 ∨ 𝜂 ) ) ) |
| 16 |
13 15
|
anbi12i |
⊢ ( ( ( ( 𝜑 → 𝜓 ) ∨ ( ¬ 𝜒 → 𝜂 ) ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( ¬ 𝜏 → 𝜂 ) ) ) ↔ ( ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 ∨ 𝜂 ) ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( 𝜏 ∨ 𝜂 ) ) ) ) |
| 17 |
11 16
|
anbi12i |
⊢ ( ( ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ( ¬ 𝜒 → 𝜃 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( ¬ 𝜏 → 𝜃 ) ) ) ∧ ( ( ( 𝜑 → 𝜓 ) ∨ ( ¬ 𝜒 → 𝜂 ) ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( ¬ 𝜏 → 𝜂 ) ) ) ) ↔ ( ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ( 𝜒 ∨ 𝜃 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜏 ∨ 𝜃 ) ) ) ∧ ( ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 ∨ 𝜂 ) ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( 𝜏 ∨ 𝜂 ) ) ) ) ) |
| 18 |
6 17
|
bitri |
⊢ ( ( if- ( 𝜑 , 𝜒 , 𝜏 ) ∨ if- ( 𝜓 , 𝜃 , 𝜂 ) ) ↔ ( ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ( 𝜒 ∨ 𝜃 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜏 ∨ 𝜃 ) ) ) ∧ ( ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 ∨ 𝜂 ) ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( 𝜏 ∨ 𝜂 ) ) ) ) ) |