Metamath Proof Explorer


Theorem ifpr

Description: Membership of a conditional operator in an unordered pair. (Contributed by NM, 17-Jun-2007)

Ref Expression
Assertion ifpr ACBDifφABAB

Proof

Step Hyp Ref Expression
1 elex ACAV
2 elex BDBV
3 ifcl AVBVifφABV
4 ifeqor ifφAB=AifφAB=B
5 elprg ifφABVifφABABifφAB=AifφAB=B
6 4 5 mpbiri ifφABVifφABAB
7 3 6 syl AVBVifφABAB
8 1 2 7 syl2an ACBDifφABAB