Metamath Proof Explorer


Theorem iin0

Description: An indexed intersection of the empty set, with a nonempty index set, is empty. (Contributed by NM, 20-Oct-2005)

Ref Expression
Assertion iin0 AxA=

Proof

Step Hyp Ref Expression
1 iinconst AxA=
2 0ex V
3 2 n0ii ¬V=
4 0iin x=V
5 4 eqeq1i x=V=
6 3 5 mtbir ¬x=
7 iineq1 A=xA=x
8 7 eqeq1d A=xA=x=
9 6 8 mtbiri A=¬xA=
10 9 necon2ai xA=A
11 1 10 impbii AxA=