| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iinconst |  |-  ( A =/= (/) -> |^|_ x e. A (/) = (/) ) | 
						
							| 2 |  | 0ex |  |-  (/) e. _V | 
						
							| 3 | 2 | n0ii |  |-  -. _V = (/) | 
						
							| 4 |  | 0iin |  |-  |^|_ x e. (/) (/) = _V | 
						
							| 5 | 4 | eqeq1i |  |-  ( |^|_ x e. (/) (/) = (/) <-> _V = (/) ) | 
						
							| 6 | 3 5 | mtbir |  |-  -. |^|_ x e. (/) (/) = (/) | 
						
							| 7 |  | iineq1 |  |-  ( A = (/) -> |^|_ x e. A (/) = |^|_ x e. (/) (/) ) | 
						
							| 8 | 7 | eqeq1d |  |-  ( A = (/) -> ( |^|_ x e. A (/) = (/) <-> |^|_ x e. (/) (/) = (/) ) ) | 
						
							| 9 | 6 8 | mtbiri |  |-  ( A = (/) -> -. |^|_ x e. A (/) = (/) ) | 
						
							| 10 | 9 | necon2ai |  |-  ( |^|_ x e. A (/) = (/) -> A =/= (/) ) | 
						
							| 11 | 1 10 | impbii |  |-  ( A =/= (/) <-> |^|_ x e. A (/) = (/) ) |