Metamath Proof Explorer


Theorem iinab

Description: Indexed intersection of a class abstraction. (Contributed by NM, 6-Dec-2011)

Ref Expression
Assertion iinab xAy|φ=y|xAφ

Proof

Step Hyp Ref Expression
1 nfcv _yA
2 nfab1 _yy|φ
3 1 2 nfiin _yxAy|φ
4 nfab1 _yy|xAφ
5 3 4 cleqf xAy|φ=y|xAφyyxAy|φyy|xAφ
6 abid yy|φφ
7 6 ralbii xAyy|φxAφ
8 eliin yVyxAy|φxAyy|φ
9 8 elv yxAy|φxAyy|φ
10 abid yy|xAφxAφ
11 7 9 10 3bitr4i yxAy|φyy|xAφ
12 5 11 mpgbir xAy|φ=y|xAφ