Metamath Proof Explorer


Theorem iinexd

Description: The existence of an indexed union. x is normally a free-variable parameter in B , which should be read B ( x ) . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses iinexd.1 φA
iinexd.2 φxABC
Assertion iinexd φxABV

Proof

Step Hyp Ref Expression
1 iinexd.1 φA
2 iinexd.2 φxABC
3 iinexg AxABCxABV
4 1 2 3 syl2anc φxABV