Metamath Proof Explorer


Theorem iinexd

Description: The existence of an indexed union. x is normally a free-variable parameter in B , which should be read B ( x ) . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses iinexd.1
|- ( ph -> A =/= (/) )
iinexd.2
|- ( ph -> A. x e. A B e. C )
Assertion iinexd
|- ( ph -> |^|_ x e. A B e. _V )

Proof

Step Hyp Ref Expression
1 iinexd.1
 |-  ( ph -> A =/= (/) )
2 iinexd.2
 |-  ( ph -> A. x e. A B e. C )
3 iinexg
 |-  ( ( A =/= (/) /\ A. x e. A B e. C ) -> |^|_ x e. A B e. _V )
4 1 2 3 syl2anc
 |-  ( ph -> |^|_ x e. A B e. _V )