Metamath Proof Explorer


Theorem imaddd

Description: Imaginary part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses recld.1 φA
readdd.2 φB
Assertion imaddd φA+B=A+B

Proof

Step Hyp Ref Expression
1 recld.1 φA
2 readdd.2 φB
3 imadd ABA+B=A+B
4 1 2 3 syl2anc φA+B=A+B