Metamath Proof Explorer


Theorem imadmres

Description: The image of the domain of a restriction. (Contributed by NM, 8-Apr-2007)

Ref Expression
Assertion imadmres AdomAB=AB

Proof

Step Hyp Ref Expression
1 resdmres AdomAB=AB
2 1 rneqi ranAdomAB=ranAB
3 df-ima AdomAB=ranAdomAB
4 df-ima AB=ranAB
5 2 3 4 3eqtr4i AdomAB=AB