Metamath Proof Explorer


Theorem imasng

Description: The image of a singleton. (Contributed by NM, 8-May-2005)

Ref Expression
Assertion imasng ABRA=y|ARy

Proof

Step Hyp Ref Expression
1 elex ABAV
2 dfima2 RA=y|xAxRy
3 breq1 x=AxRyARy
4 3 rexsng AVxAxRyARy
5 4 abbidv AVy|xAxRy=y|ARy
6 2 5 eqtrid AVRA=y|ARy
7 1 6 syl ABRA=y|ARy