Metamath Proof Explorer


Theorem imasvalstr

Description: An image structure value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Mario Carneiro, 30-Apr-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypothesis imasvalstr.u U=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndx,˙TopSetndxOndxLdistndxD
Assertion imasvalstr UStruct112

Proof

Step Hyp Ref Expression
1 imasvalstr.u U=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndx,˙TopSetndxOndxLdistndxD
2 eqid BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndx,˙=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndx,˙
3 2 ipsstr BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndx,˙Struct18
4 9nn 9
5 tsetndx TopSetndx=9
6 9lt10 9<10
7 10nn 10
8 plendx ndx=10
9 1nn0 10
10 0nn0 00
11 2nn 2
12 2pos 0<2
13 9 10 11 12 declt 10<12
14 9 11 decnncl 12
15 dsndx distndx=12
16 4 5 6 7 8 13 14 15 strle3 TopSetndxOndxLdistndxDStruct912
17 8lt9 8<9
18 3 16 17 strleun BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndx,˙TopSetndxOndxLdistndxDStruct112
19 1 18 eqbrtri UStruct112