Metamath Proof Explorer


Theorem imaundi

Description: Distributive law for image over union. Theorem 35 of Suppes p. 65. (Contributed by NM, 30-Sep-2002)

Ref Expression
Assertion imaundi ABC=ABAC

Proof

Step Hyp Ref Expression
1 resundi ABC=ABAC
2 1 rneqi ranABC=ranABAC
3 rnun ranABAC=ranABranAC
4 2 3 eqtri ranABC=ranABranAC
5 df-ima ABC=ranABC
6 df-ima AB=ranAB
7 df-ima AC=ranAC
8 6 7 uneq12i ABAC=ranABranAC
9 4 5 8 3eqtr4i ABC=ABAC