Metamath Proof Explorer


Theorem imaundir

Description: The image of a union. (Contributed by Jeff Hoffman, 17-Feb-2008)

Ref Expression
Assertion imaundir ABC=ACBC

Proof

Step Hyp Ref Expression
1 df-ima ABC=ranABC
2 resundir ABC=ACBC
3 2 rneqi ranABC=ranACBC
4 rnun ranACBC=ranACranBC
5 1 3 4 3eqtri ABC=ranACranBC
6 df-ima AC=ranAC
7 df-ima BC=ranBC
8 6 7 uneq12i ACBC=ranACranBC
9 5 8 eqtr4i ABC=ACBC