Metamath Proof Explorer


Theorem immuld

Description: Imaginary part of a product. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses recld.1 φA
readdd.2 φB
Assertion immuld φAB=AB+AB

Proof

Step Hyp Ref Expression
1 recld.1 φA
2 readdd.2 φB
3 immul ABAB=AB+AB
4 1 2 3 syl2anc φAB=AB+AB