Metamath Proof Explorer


Theorem impsingle

Description: The shortest single axiom for implicational calculus, due to Lukasiewicz. It is now known to be theunique shortest axiom. The axiom is proved here starting from { ax-1 , ax-2 and peirce }. (Contributed by Larry Lesyna and Jeffrey P. Machado, 18-Jul-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion impsingle φ ψ χ χ φ θ φ

Proof

Step Hyp Ref Expression
1 imim1 φ ψ χ χ φ φ ψ φ
2 peirce φ ψ φ φ
3 2 a1d φ ψ φ θ φ
4 1 3 syl6 φ ψ χ χ φ θ φ