Metamath Proof Explorer


Theorem impsingle-step4

Description: Derivation of impsingle-step4 from ax-mp and impsingle . It is used as a lemma in proofs of imim1 and peirce from impsingle . It is Step 4 in Lukasiewicz, where it appears as 'CCCpqpCsp' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion impsingle-step4 φ ψ φ χ φ

Proof

Step Hyp Ref Expression
1 impsingle τ η ζ ζ τ σ τ
2 impsingle φ θ φ ψ φ ψ φ χ φ
3 impsingle φ ψ φ ψ φ ψ φ χ φ
4 impsingle φ ψ φ ψ φ ψ φ χ φ φ ψ φ χ φ φ ψ φ θ φ ψ
5 3 4 ax-mp φ ψ φ χ φ φ ψ φ θ φ ψ
6 impsingle φ ψ φ χ φ φ ψ φ θ φ ψ φ θ φ ψ φ ψ φ χ φ τ η ζ ζ τ σ τ φ ψ φ χ φ
7 5 6 ax-mp φ θ φ ψ φ ψ φ χ φ τ η ζ ζ τ σ τ φ ψ φ χ φ
8 2 7 ax-mp τ η ζ ζ τ σ τ φ ψ φ χ φ
9 1 8 ax-mp φ ψ φ χ φ