Metamath Proof Explorer


Theorem impsingle-step4

Description: Derivation of impsingle-step4 from ax-mp and impsingle . It is used as a lemma in proofs of imim1 and peirce from impsingle . It is Step 4 in Lukasiewicz, where it appears as 'CCCpqpCsp' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion impsingle-step4 ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜒𝜑 ) )

Proof

Step Hyp Ref Expression
1 impsingle ( ( ( 𝜏𝜂 ) → 𝜁 ) → ( ( 𝜁𝜏 ) → ( 𝜎𝜏 ) ) )
2 impsingle ( ( ( 𝜑𝜃 ) → ( 𝜑𝜓 ) ) → ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜒𝜑 ) ) )
3 impsingle ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜒𝜑 ) ) )
4 impsingle ( ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜒𝜑 ) ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜒𝜑 ) ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜃 ) → ( 𝜑𝜓 ) ) ) )
5 3 4 ax-mp ( ( ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜒𝜑 ) ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜃 ) → ( 𝜑𝜓 ) ) )
6 impsingle ( ( ( ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜒𝜑 ) ) → ( 𝜑𝜓 ) ) → ( ( 𝜑𝜃 ) → ( 𝜑𝜓 ) ) ) → ( ( ( ( 𝜑𝜃 ) → ( 𝜑𝜓 ) ) → ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜒𝜑 ) ) ) → ( ( ( ( 𝜏𝜂 ) → 𝜁 ) → ( ( 𝜁𝜏 ) → ( 𝜎𝜏 ) ) ) → ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜒𝜑 ) ) ) ) )
7 5 6 ax-mp ( ( ( ( 𝜑𝜃 ) → ( 𝜑𝜓 ) ) → ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜒𝜑 ) ) ) → ( ( ( ( 𝜏𝜂 ) → 𝜁 ) → ( ( 𝜁𝜏 ) → ( 𝜎𝜏 ) ) ) → ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜒𝜑 ) ) ) )
8 2 7 ax-mp ( ( ( ( 𝜏𝜂 ) → 𝜁 ) → ( ( 𝜁𝜏 ) → ( 𝜎𝜏 ) ) ) → ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜒𝜑 ) ) )
9 1 8 ax-mp ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜒𝜑 ) )