Step |
Hyp |
Ref |
Expression |
1 |
|
impsingle |
⊢ ( ( ( 𝜏 → 𝜂 ) → 𝜁 ) → ( ( 𝜁 → 𝜏 ) → ( 𝜎 → 𝜏 ) ) ) |
2 |
|
impsingle |
⊢ ( ( ( 𝜒 → 𝜃 ) → ( 𝜑 → 𝜓 ) ) → ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜓 → 𝜒 ) ) ) |
3 |
|
impsingle |
⊢ ( ( ( 𝜓 → 𝜃 ) → ( 𝜓 → 𝜒 ) ) → ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → ( 𝜑 → 𝜓 ) ) ) |
4 |
|
impsingle |
⊢ ( ( ( 𝜓 → 𝜒 ) → ( 𝜓 → 𝜒 ) ) → ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → ( 𝜑 → 𝜓 ) ) ) |
5 |
|
impsingle |
⊢ ( ( ( ( 𝜓 → 𝜒 ) → ( 𝜓 → 𝜒 ) ) → ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → ( 𝜑 → 𝜓 ) ) ) → ( ( ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → ( 𝜑 → 𝜓 ) ) → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜃 ) → ( 𝜓 → 𝜒 ) ) ) ) |
6 |
4 5
|
ax-mp |
⊢ ( ( ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → ( 𝜑 → 𝜓 ) ) → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜃 ) → ( 𝜓 → 𝜒 ) ) ) |
7 |
|
impsingle |
⊢ ( ( ( ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → ( 𝜑 → 𝜓 ) ) → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜃 ) → ( 𝜓 → 𝜒 ) ) ) → ( ( ( ( 𝜓 → 𝜃 ) → ( 𝜓 → 𝜒 ) ) → ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → ( 𝜑 → 𝜓 ) ) ) → ( ( ( ( 𝜏 → 𝜂 ) → 𝜁 ) → ( ( 𝜁 → 𝜏 ) → ( 𝜎 → 𝜏 ) ) ) → ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → ( 𝜑 → 𝜓 ) ) ) ) ) |
8 |
6 7
|
ax-mp |
⊢ ( ( ( ( 𝜓 → 𝜃 ) → ( 𝜓 → 𝜒 ) ) → ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → ( 𝜑 → 𝜓 ) ) ) → ( ( ( ( 𝜏 → 𝜂 ) → 𝜁 ) → ( ( 𝜁 → 𝜏 ) → ( 𝜎 → 𝜏 ) ) ) → ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → ( 𝜑 → 𝜓 ) ) ) ) |
9 |
3 8
|
ax-mp |
⊢ ( ( ( ( 𝜏 → 𝜂 ) → 𝜁 ) → ( ( 𝜁 → 𝜏 ) → ( 𝜎 → 𝜏 ) ) ) → ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → ( 𝜑 → 𝜓 ) ) ) |
10 |
1 9
|
ax-mp |
⊢ ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → ( 𝜑 → 𝜓 ) ) |
11 |
|
impsingle |
⊢ ( ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → ( 𝜑 → 𝜓 ) ) → ( ( ( 𝜑 → 𝜓 ) → ( 𝜓 → 𝜒 ) ) → ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜓 → 𝜒 ) ) ) ) |
12 |
10 11
|
ax-mp |
⊢ ( ( ( 𝜑 → 𝜓 ) → ( 𝜓 → 𝜒 ) ) → ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜓 → 𝜒 ) ) ) |
13 |
|
impsingle |
⊢ ( ( ( ( 𝜑 → 𝜓 ) → ( 𝜓 → 𝜒 ) ) → ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜓 → 𝜒 ) ) ) → ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜓 ) ) → ( ( 𝜒 → 𝜃 ) → ( 𝜑 → 𝜓 ) ) ) ) |
14 |
12 13
|
ax-mp |
⊢ ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜓 ) ) → ( ( 𝜒 → 𝜃 ) → ( 𝜑 → 𝜓 ) ) ) |
15 |
|
impsingle |
⊢ ( ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜓 ) ) → ( ( 𝜒 → 𝜃 ) → ( 𝜑 → 𝜓 ) ) ) → ( ( ( ( 𝜒 → 𝜃 ) → ( 𝜑 → 𝜓 ) ) → ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜓 → 𝜒 ) ) ) → ( ( ( ( 𝜏 → 𝜂 ) → 𝜁 ) → ( ( 𝜁 → 𝜏 ) → ( 𝜎 → 𝜏 ) ) ) → ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜓 → 𝜒 ) ) ) ) ) |
16 |
14 15
|
ax-mp |
⊢ ( ( ( ( 𝜒 → 𝜃 ) → ( 𝜑 → 𝜓 ) ) → ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜓 → 𝜒 ) ) ) → ( ( ( ( 𝜏 → 𝜂 ) → 𝜁 ) → ( ( 𝜁 → 𝜏 ) → ( 𝜎 → 𝜏 ) ) ) → ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜓 → 𝜒 ) ) ) ) |
17 |
2 16
|
ax-mp |
⊢ ( ( ( ( 𝜏 → 𝜂 ) → 𝜁 ) → ( ( 𝜁 → 𝜏 ) → ( 𝜎 → 𝜏 ) ) ) → ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜓 → 𝜒 ) ) ) |
18 |
1 17
|
ax-mp |
⊢ ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜓 → 𝜒 ) ) |