Metamath Proof Explorer


Theorem impsingle-step8

Description: Derivation of impsingle-step8 from ax-mp and impsingle . It is used as a lemma in proofs of ax-1 imim1 and peirce from impsingle . It is Step 8 in Lukasiewicz, where it appears as 'CCCsqpCqp' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion impsingle-step8 ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 impsingle ( ( ( 𝜏𝜂 ) → 𝜁 ) → ( ( 𝜁𝜏 ) → ( 𝜎𝜏 ) ) )
2 impsingle ( ( ( 𝜒𝜃 ) → ( 𝜑𝜓 ) ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜓𝜒 ) ) )
3 impsingle ( ( ( 𝜓𝜃 ) → ( 𝜓𝜒 ) ) → ( ( ( 𝜓𝜒 ) → 𝜓 ) → ( 𝜑𝜓 ) ) )
4 impsingle ( ( ( 𝜓𝜒 ) → ( 𝜓𝜒 ) ) → ( ( ( 𝜓𝜒 ) → 𝜓 ) → ( 𝜑𝜓 ) ) )
5 impsingle ( ( ( ( 𝜓𝜒 ) → ( 𝜓𝜒 ) ) → ( ( ( 𝜓𝜒 ) → 𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( ( ( ( 𝜓𝜒 ) → 𝜓 ) → ( 𝜑𝜓 ) ) → ( 𝜓𝜒 ) ) → ( ( 𝜓𝜃 ) → ( 𝜓𝜒 ) ) ) )
6 4 5 ax-mp ( ( ( ( ( 𝜓𝜒 ) → 𝜓 ) → ( 𝜑𝜓 ) ) → ( 𝜓𝜒 ) ) → ( ( 𝜓𝜃 ) → ( 𝜓𝜒 ) ) )
7 impsingle ( ( ( ( ( ( 𝜓𝜒 ) → 𝜓 ) → ( 𝜑𝜓 ) ) → ( 𝜓𝜒 ) ) → ( ( 𝜓𝜃 ) → ( 𝜓𝜒 ) ) ) → ( ( ( ( 𝜓𝜃 ) → ( 𝜓𝜒 ) ) → ( ( ( 𝜓𝜒 ) → 𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( ( ( 𝜏𝜂 ) → 𝜁 ) → ( ( 𝜁𝜏 ) → ( 𝜎𝜏 ) ) ) → ( ( ( 𝜓𝜒 ) → 𝜓 ) → ( 𝜑𝜓 ) ) ) ) )
8 6 7 ax-mp ( ( ( ( 𝜓𝜃 ) → ( 𝜓𝜒 ) ) → ( ( ( 𝜓𝜒 ) → 𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( ( ( 𝜏𝜂 ) → 𝜁 ) → ( ( 𝜁𝜏 ) → ( 𝜎𝜏 ) ) ) → ( ( ( 𝜓𝜒 ) → 𝜓 ) → ( 𝜑𝜓 ) ) ) )
9 3 8 ax-mp ( ( ( ( 𝜏𝜂 ) → 𝜁 ) → ( ( 𝜁𝜏 ) → ( 𝜎𝜏 ) ) ) → ( ( ( 𝜓𝜒 ) → 𝜓 ) → ( 𝜑𝜓 ) ) )
10 1 9 ax-mp ( ( ( 𝜓𝜒 ) → 𝜓 ) → ( 𝜑𝜓 ) )
11 impsingle ( ( ( ( 𝜓𝜒 ) → 𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜓𝜒 ) ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜓𝜒 ) ) ) )
12 10 11 ax-mp ( ( ( 𝜑𝜓 ) → ( 𝜓𝜒 ) ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜓𝜒 ) ) )
13 impsingle ( ( ( ( 𝜑𝜓 ) → ( 𝜓𝜒 ) ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜓𝜒 ) ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜓𝜒 ) ) → ( 𝜑𝜓 ) ) → ( ( 𝜒𝜃 ) → ( 𝜑𝜓 ) ) ) )
14 12 13 ax-mp ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜓𝜒 ) ) → ( 𝜑𝜓 ) ) → ( ( 𝜒𝜃 ) → ( 𝜑𝜓 ) ) )
15 impsingle ( ( ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜓𝜒 ) ) → ( 𝜑𝜓 ) ) → ( ( 𝜒𝜃 ) → ( 𝜑𝜓 ) ) ) → ( ( ( ( 𝜒𝜃 ) → ( 𝜑𝜓 ) ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜓𝜒 ) ) ) → ( ( ( ( 𝜏𝜂 ) → 𝜁 ) → ( ( 𝜁𝜏 ) → ( 𝜎𝜏 ) ) ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜓𝜒 ) ) ) ) )
16 14 15 ax-mp ( ( ( ( 𝜒𝜃 ) → ( 𝜑𝜓 ) ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜓𝜒 ) ) ) → ( ( ( ( 𝜏𝜂 ) → 𝜁 ) → ( ( 𝜁𝜏 ) → ( 𝜎𝜏 ) ) ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜓𝜒 ) ) ) )
17 2 16 ax-mp ( ( ( ( 𝜏𝜂 ) → 𝜁 ) → ( ( 𝜁𝜏 ) → ( 𝜎𝜏 ) ) ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜓𝜒 ) ) )
18 1 17 ax-mp ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜓𝜒 ) )