| Step |
Hyp |
Ref |
Expression |
| 1 |
|
impsingle |
⊢ ( ( ( 𝜏 → 𝜂 ) → 𝜁 ) → ( ( 𝜁 → 𝜏 ) → ( 𝜎 → 𝜏 ) ) ) |
| 2 |
|
impsingle |
⊢ ( ( ( 𝜒 → 𝜃 ) → ( 𝜑 → 𝜓 ) ) → ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜓 → 𝜒 ) ) ) |
| 3 |
|
impsingle |
⊢ ( ( ( 𝜓 → 𝜃 ) → ( 𝜓 → 𝜒 ) ) → ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → ( 𝜑 → 𝜓 ) ) ) |
| 4 |
|
impsingle |
⊢ ( ( ( 𝜓 → 𝜒 ) → ( 𝜓 → 𝜒 ) ) → ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → ( 𝜑 → 𝜓 ) ) ) |
| 5 |
|
impsingle |
⊢ ( ( ( ( 𝜓 → 𝜒 ) → ( 𝜓 → 𝜒 ) ) → ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → ( 𝜑 → 𝜓 ) ) ) → ( ( ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → ( 𝜑 → 𝜓 ) ) → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜃 ) → ( 𝜓 → 𝜒 ) ) ) ) |
| 6 |
4 5
|
ax-mp |
⊢ ( ( ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → ( 𝜑 → 𝜓 ) ) → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜃 ) → ( 𝜓 → 𝜒 ) ) ) |
| 7 |
|
impsingle |
⊢ ( ( ( ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → ( 𝜑 → 𝜓 ) ) → ( 𝜓 → 𝜒 ) ) → ( ( 𝜓 → 𝜃 ) → ( 𝜓 → 𝜒 ) ) ) → ( ( ( ( 𝜓 → 𝜃 ) → ( 𝜓 → 𝜒 ) ) → ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → ( 𝜑 → 𝜓 ) ) ) → ( ( ( ( 𝜏 → 𝜂 ) → 𝜁 ) → ( ( 𝜁 → 𝜏 ) → ( 𝜎 → 𝜏 ) ) ) → ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → ( 𝜑 → 𝜓 ) ) ) ) ) |
| 8 |
6 7
|
ax-mp |
⊢ ( ( ( ( 𝜓 → 𝜃 ) → ( 𝜓 → 𝜒 ) ) → ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → ( 𝜑 → 𝜓 ) ) ) → ( ( ( ( 𝜏 → 𝜂 ) → 𝜁 ) → ( ( 𝜁 → 𝜏 ) → ( 𝜎 → 𝜏 ) ) ) → ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → ( 𝜑 → 𝜓 ) ) ) ) |
| 9 |
3 8
|
ax-mp |
⊢ ( ( ( ( 𝜏 → 𝜂 ) → 𝜁 ) → ( ( 𝜁 → 𝜏 ) → ( 𝜎 → 𝜏 ) ) ) → ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → ( 𝜑 → 𝜓 ) ) ) |
| 10 |
1 9
|
ax-mp |
⊢ ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → ( 𝜑 → 𝜓 ) ) |
| 11 |
|
impsingle |
⊢ ( ( ( ( 𝜓 → 𝜒 ) → 𝜓 ) → ( 𝜑 → 𝜓 ) ) → ( ( ( 𝜑 → 𝜓 ) → ( 𝜓 → 𝜒 ) ) → ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜓 → 𝜒 ) ) ) ) |
| 12 |
10 11
|
ax-mp |
⊢ ( ( ( 𝜑 → 𝜓 ) → ( 𝜓 → 𝜒 ) ) → ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜓 → 𝜒 ) ) ) |
| 13 |
|
impsingle |
⊢ ( ( ( ( 𝜑 → 𝜓 ) → ( 𝜓 → 𝜒 ) ) → ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜓 → 𝜒 ) ) ) → ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜓 ) ) → ( ( 𝜒 → 𝜃 ) → ( 𝜑 → 𝜓 ) ) ) ) |
| 14 |
12 13
|
ax-mp |
⊢ ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜓 ) ) → ( ( 𝜒 → 𝜃 ) → ( 𝜑 → 𝜓 ) ) ) |
| 15 |
|
impsingle |
⊢ ( ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜓 → 𝜒 ) ) → ( 𝜑 → 𝜓 ) ) → ( ( 𝜒 → 𝜃 ) → ( 𝜑 → 𝜓 ) ) ) → ( ( ( ( 𝜒 → 𝜃 ) → ( 𝜑 → 𝜓 ) ) → ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜓 → 𝜒 ) ) ) → ( ( ( ( 𝜏 → 𝜂 ) → 𝜁 ) → ( ( 𝜁 → 𝜏 ) → ( 𝜎 → 𝜏 ) ) ) → ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜓 → 𝜒 ) ) ) ) ) |
| 16 |
14 15
|
ax-mp |
⊢ ( ( ( ( 𝜒 → 𝜃 ) → ( 𝜑 → 𝜓 ) ) → ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜓 → 𝜒 ) ) ) → ( ( ( ( 𝜏 → 𝜂 ) → 𝜁 ) → ( ( 𝜁 → 𝜏 ) → ( 𝜎 → 𝜏 ) ) ) → ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜓 → 𝜒 ) ) ) ) |
| 17 |
2 16
|
ax-mp |
⊢ ( ( ( ( 𝜏 → 𝜂 ) → 𝜁 ) → ( ( 𝜁 → 𝜏 ) → ( 𝜎 → 𝜏 ) ) ) → ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜓 → 𝜒 ) ) ) |
| 18 |
1 17
|
ax-mp |
⊢ ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜓 → 𝜒 ) ) |