Metamath Proof Explorer


Theorem impsingle-step19

Description: Derivation of impsingle-step19 from ax-mp and impsingle . It is used as a lemma in proofs of imim1 and peirce from impsingle . It is Step 19 in Lukasiewicz, where it appears as 'CCCCspqCrpCCCpqrCsp' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion impsingle-step19 φ ψ χ θ ψ ψ χ θ φ ψ

Proof

Step Hyp Ref Expression
1 impsingle-step18 τ η ζ η η σ τ ρ μ η σ τ ρ
2 impsingle-step18 θ ψ φ ψ ψ χ θ φ ψ φ ψ χ θ ψ ψ χ θ φ ψ
3 impsingle-step18 θ ψ φ ψ ψ χ θ φ ψ φ ψ χ θ ψ ψ χ θ φ ψ τ η ζ η η σ τ ρ μ η σ τ ρ φ ψ χ θ ψ ψ χ θ φ ψ
4 2 3 ax-mp τ η ζ η η σ τ ρ μ η σ τ ρ φ ψ χ θ ψ ψ χ θ φ ψ
5 1 4 ax-mp φ ψ χ θ ψ ψ χ θ φ ψ