| Step |
Hyp |
Ref |
Expression |
| 1 |
|
impsingle-step18 |
⊢ ( ( ( ( 𝜏 → 𝜂 ) → ( 𝜁 → 𝜂 ) ) → ( ( ( 𝜂 → 𝜎 ) → 𝜏 ) → 𝜌 ) ) → ( 𝜇 → ( ( ( 𝜂 → 𝜎 ) → 𝜏 ) → 𝜌 ) ) ) |
| 2 |
|
impsingle-step18 |
⊢ ( ( ( ( 𝜃 → 𝜓 ) → ( 𝜑 → 𝜓 ) ) → ( ( ( 𝜓 → 𝜒 ) → 𝜃 ) → ( 𝜑 → 𝜓 ) ) ) → ( ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜃 → 𝜓 ) ) → ( ( ( 𝜓 → 𝜒 ) → 𝜃 ) → ( 𝜑 → 𝜓 ) ) ) ) |
| 3 |
|
impsingle-step18 |
⊢ ( ( ( ( ( 𝜃 → 𝜓 ) → ( 𝜑 → 𝜓 ) ) → ( ( ( 𝜓 → 𝜒 ) → 𝜃 ) → ( 𝜑 → 𝜓 ) ) ) → ( ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜃 → 𝜓 ) ) → ( ( ( 𝜓 → 𝜒 ) → 𝜃 ) → ( 𝜑 → 𝜓 ) ) ) ) → ( ( ( ( ( 𝜏 → 𝜂 ) → ( 𝜁 → 𝜂 ) ) → ( ( ( 𝜂 → 𝜎 ) → 𝜏 ) → 𝜌 ) ) → ( 𝜇 → ( ( ( 𝜂 → 𝜎 ) → 𝜏 ) → 𝜌 ) ) ) → ( ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜃 → 𝜓 ) ) → ( ( ( 𝜓 → 𝜒 ) → 𝜃 ) → ( 𝜑 → 𝜓 ) ) ) ) ) |
| 4 |
2 3
|
ax-mp |
⊢ ( ( ( ( ( 𝜏 → 𝜂 ) → ( 𝜁 → 𝜂 ) ) → ( ( ( 𝜂 → 𝜎 ) → 𝜏 ) → 𝜌 ) ) → ( 𝜇 → ( ( ( 𝜂 → 𝜎 ) → 𝜏 ) → 𝜌 ) ) ) → ( ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜃 → 𝜓 ) ) → ( ( ( 𝜓 → 𝜒 ) → 𝜃 ) → ( 𝜑 → 𝜓 ) ) ) ) |
| 5 |
1 4
|
ax-mp |
⊢ ( ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( 𝜃 → 𝜓 ) ) → ( ( ( 𝜓 → 𝜒 ) → 𝜃 ) → ( 𝜑 → 𝜓 ) ) ) |