Metamath Proof Explorer


Theorem impsingle-step19

Description: Derivation of impsingle-step19 from ax-mp and impsingle . It is used as a lemma in proofs of imim1 and peirce from impsingle . It is Step 19 in Lukasiewicz, where it appears as 'CCCCspqCrpCCCpqrCsp' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion impsingle-step19 ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜃𝜓 ) ) → ( ( ( 𝜓𝜒 ) → 𝜃 ) → ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 impsingle-step18 ( ( ( ( 𝜏𝜂 ) → ( 𝜁𝜂 ) ) → ( ( ( 𝜂𝜎 ) → 𝜏 ) → 𝜌 ) ) → ( 𝜇 → ( ( ( 𝜂𝜎 ) → 𝜏 ) → 𝜌 ) ) )
2 impsingle-step18 ( ( ( ( 𝜃𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( 𝜓𝜒 ) → 𝜃 ) → ( 𝜑𝜓 ) ) ) → ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜃𝜓 ) ) → ( ( ( 𝜓𝜒 ) → 𝜃 ) → ( 𝜑𝜓 ) ) ) )
3 impsingle-step18 ( ( ( ( ( 𝜃𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( 𝜓𝜒 ) → 𝜃 ) → ( 𝜑𝜓 ) ) ) → ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜃𝜓 ) ) → ( ( ( 𝜓𝜒 ) → 𝜃 ) → ( 𝜑𝜓 ) ) ) ) → ( ( ( ( ( 𝜏𝜂 ) → ( 𝜁𝜂 ) ) → ( ( ( 𝜂𝜎 ) → 𝜏 ) → 𝜌 ) ) → ( 𝜇 → ( ( ( 𝜂𝜎 ) → 𝜏 ) → 𝜌 ) ) ) → ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜃𝜓 ) ) → ( ( ( 𝜓𝜒 ) → 𝜃 ) → ( 𝜑𝜓 ) ) ) ) )
4 2 3 ax-mp ( ( ( ( ( 𝜏𝜂 ) → ( 𝜁𝜂 ) ) → ( ( ( 𝜂𝜎 ) → 𝜏 ) → 𝜌 ) ) → ( 𝜇 → ( ( ( 𝜂𝜎 ) → 𝜏 ) → 𝜌 ) ) ) → ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜃𝜓 ) ) → ( ( ( 𝜓𝜒 ) → 𝜃 ) → ( 𝜑𝜓 ) ) ) )
5 1 4 ax-mp ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜃𝜓 ) ) → ( ( ( 𝜓𝜒 ) → 𝜃 ) → ( 𝜑𝜓 ) ) )