Metamath Proof Explorer


Theorem impsingle-step18

Description: Derivation of impsingle-step18 from ax-mp and impsingle . It is used as a lemma in proofs of imim1 and peirce from impsingle . It is Step 18 in Lukasiewicz, where it appears as 'CCCCrpCspCCCpqrtCuCCCpqrt' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion impsingle-step18 ( ( ( ( 𝜑𝜓 ) → ( 𝜒𝜓 ) ) → ( ( ( 𝜓𝜃 ) → 𝜑 ) → 𝜏 ) ) → ( 𝜂 → ( ( ( 𝜓𝜃 ) → 𝜑 ) → 𝜏 ) ) )

Proof

Step Hyp Ref Expression
1 impsingle ( ( ( 𝜓𝜃 ) → 𝜑 ) → ( ( 𝜑𝜓 ) → ( 𝜒𝜓 ) ) )
2 impsingle ( ( ( ( 𝜒𝜓 ) → 𝜌 ) → ( ( ( 𝜓𝜃 ) → 𝜑 ) → 𝜏 ) ) → ( ( ( ( ( 𝜓𝜃 ) → 𝜑 ) → 𝜏 ) → ( 𝜒𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜒𝜓 ) ) ) )
3 impsingle-step8 ( ( ( ( ( 𝜒𝜓 ) → 𝜌 ) → ( ( ( 𝜓𝜃 ) → 𝜑 ) → 𝜏 ) ) → ( ( ( ( ( 𝜓𝜃 ) → 𝜑 ) → 𝜏 ) → ( 𝜒𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜒𝜓 ) ) ) ) → ( ( ( ( 𝜓𝜃 ) → 𝜑 ) → 𝜏 ) → ( ( ( ( ( 𝜓𝜃 ) → 𝜑 ) → 𝜏 ) → ( 𝜒𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜒𝜓 ) ) ) ) )
4 2 3 ax-mp ( ( ( ( 𝜓𝜃 ) → 𝜑 ) → 𝜏 ) → ( ( ( ( ( 𝜓𝜃 ) → 𝜑 ) → 𝜏 ) → ( 𝜒𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜒𝜓 ) ) ) )
5 impsingle-step15 ( ( ( ( ( 𝜓𝜃 ) → 𝜑 ) → 𝜏 ) → ( ( ( ( ( 𝜓𝜃 ) → 𝜑 ) → 𝜏 ) → ( 𝜒𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜒𝜓 ) ) ) ) → ( ( ( ( 𝜓𝜃 ) → 𝜑 ) → ( ( 𝜑𝜓 ) → ( 𝜒𝜓 ) ) ) → ( ( ( ( ( 𝜓𝜃 ) → 𝜑 ) → 𝜏 ) → ( 𝜒𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜒𝜓 ) ) ) ) )
6 4 5 ax-mp ( ( ( ( 𝜓𝜃 ) → 𝜑 ) → ( ( 𝜑𝜓 ) → ( 𝜒𝜓 ) ) ) → ( ( ( ( ( 𝜓𝜃 ) → 𝜑 ) → 𝜏 ) → ( 𝜒𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜒𝜓 ) ) ) )
7 1 6 ax-mp ( ( ( ( ( 𝜓𝜃 ) → 𝜑 ) → 𝜏 ) → ( 𝜒𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜒𝜓 ) ) )
8 impsingle ( ( ( ( ( ( 𝜓𝜃 ) → 𝜑 ) → 𝜏 ) → ( 𝜒𝜓 ) ) → ( ( 𝜑𝜓 ) → ( 𝜒𝜓 ) ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜒𝜓 ) ) → ( ( ( 𝜓𝜃 ) → 𝜑 ) → 𝜏 ) ) → ( 𝜂 → ( ( ( 𝜓𝜃 ) → 𝜑 ) → 𝜏 ) ) ) )
9 7 8 ax-mp ( ( ( ( 𝜑𝜓 ) → ( 𝜒𝜓 ) ) → ( ( ( 𝜓𝜃 ) → 𝜑 ) → 𝜏 ) ) → ( 𝜂 → ( ( ( 𝜓𝜃 ) → 𝜑 ) → 𝜏 ) ) )