Step |
Hyp |
Ref |
Expression |
1 |
|
impsingle |
⊢ ( ( ( 𝜓 → 𝜃 ) → 𝜑 ) → ( ( 𝜑 → 𝜓 ) → ( 𝜒 → 𝜓 ) ) ) |
2 |
|
impsingle |
⊢ ( ( ( ( 𝜒 → 𝜓 ) → 𝜌 ) → ( ( ( 𝜓 → 𝜃 ) → 𝜑 ) → 𝜏 ) ) → ( ( ( ( ( 𝜓 → 𝜃 ) → 𝜑 ) → 𝜏 ) → ( 𝜒 → 𝜓 ) ) → ( ( 𝜑 → 𝜓 ) → ( 𝜒 → 𝜓 ) ) ) ) |
3 |
|
impsingle-step8 |
⊢ ( ( ( ( ( 𝜒 → 𝜓 ) → 𝜌 ) → ( ( ( 𝜓 → 𝜃 ) → 𝜑 ) → 𝜏 ) ) → ( ( ( ( ( 𝜓 → 𝜃 ) → 𝜑 ) → 𝜏 ) → ( 𝜒 → 𝜓 ) ) → ( ( 𝜑 → 𝜓 ) → ( 𝜒 → 𝜓 ) ) ) ) → ( ( ( ( 𝜓 → 𝜃 ) → 𝜑 ) → 𝜏 ) → ( ( ( ( ( 𝜓 → 𝜃 ) → 𝜑 ) → 𝜏 ) → ( 𝜒 → 𝜓 ) ) → ( ( 𝜑 → 𝜓 ) → ( 𝜒 → 𝜓 ) ) ) ) ) |
4 |
2 3
|
ax-mp |
⊢ ( ( ( ( 𝜓 → 𝜃 ) → 𝜑 ) → 𝜏 ) → ( ( ( ( ( 𝜓 → 𝜃 ) → 𝜑 ) → 𝜏 ) → ( 𝜒 → 𝜓 ) ) → ( ( 𝜑 → 𝜓 ) → ( 𝜒 → 𝜓 ) ) ) ) |
5 |
|
impsingle-step15 |
⊢ ( ( ( ( ( 𝜓 → 𝜃 ) → 𝜑 ) → 𝜏 ) → ( ( ( ( ( 𝜓 → 𝜃 ) → 𝜑 ) → 𝜏 ) → ( 𝜒 → 𝜓 ) ) → ( ( 𝜑 → 𝜓 ) → ( 𝜒 → 𝜓 ) ) ) ) → ( ( ( ( 𝜓 → 𝜃 ) → 𝜑 ) → ( ( 𝜑 → 𝜓 ) → ( 𝜒 → 𝜓 ) ) ) → ( ( ( ( ( 𝜓 → 𝜃 ) → 𝜑 ) → 𝜏 ) → ( 𝜒 → 𝜓 ) ) → ( ( 𝜑 → 𝜓 ) → ( 𝜒 → 𝜓 ) ) ) ) ) |
6 |
4 5
|
ax-mp |
⊢ ( ( ( ( 𝜓 → 𝜃 ) → 𝜑 ) → ( ( 𝜑 → 𝜓 ) → ( 𝜒 → 𝜓 ) ) ) → ( ( ( ( ( 𝜓 → 𝜃 ) → 𝜑 ) → 𝜏 ) → ( 𝜒 → 𝜓 ) ) → ( ( 𝜑 → 𝜓 ) → ( 𝜒 → 𝜓 ) ) ) ) |
7 |
1 6
|
ax-mp |
⊢ ( ( ( ( ( 𝜓 → 𝜃 ) → 𝜑 ) → 𝜏 ) → ( 𝜒 → 𝜓 ) ) → ( ( 𝜑 → 𝜓 ) → ( 𝜒 → 𝜓 ) ) ) |
8 |
|
impsingle |
⊢ ( ( ( ( ( ( 𝜓 → 𝜃 ) → 𝜑 ) → 𝜏 ) → ( 𝜒 → 𝜓 ) ) → ( ( 𝜑 → 𝜓 ) → ( 𝜒 → 𝜓 ) ) ) → ( ( ( ( 𝜑 → 𝜓 ) → ( 𝜒 → 𝜓 ) ) → ( ( ( 𝜓 → 𝜃 ) → 𝜑 ) → 𝜏 ) ) → ( 𝜂 → ( ( ( 𝜓 → 𝜃 ) → 𝜑 ) → 𝜏 ) ) ) ) |
9 |
7 8
|
ax-mp |
⊢ ( ( ( ( 𝜑 → 𝜓 ) → ( 𝜒 → 𝜓 ) ) → ( ( ( 𝜓 → 𝜃 ) → 𝜑 ) → 𝜏 ) ) → ( 𝜂 → ( ( ( 𝜓 → 𝜃 ) → 𝜑 ) → 𝜏 ) ) ) |