| Step |
Hyp |
Ref |
Expression |
| 1 |
|
impsingle |
|- ( ( ( ps -> th ) -> ph ) -> ( ( ph -> ps ) -> ( ch -> ps ) ) ) |
| 2 |
|
impsingle |
|- ( ( ( ( ch -> ps ) -> rh ) -> ( ( ( ps -> th ) -> ph ) -> ta ) ) -> ( ( ( ( ( ps -> th ) -> ph ) -> ta ) -> ( ch -> ps ) ) -> ( ( ph -> ps ) -> ( ch -> ps ) ) ) ) |
| 3 |
|
impsingle-step8 |
|- ( ( ( ( ( ch -> ps ) -> rh ) -> ( ( ( ps -> th ) -> ph ) -> ta ) ) -> ( ( ( ( ( ps -> th ) -> ph ) -> ta ) -> ( ch -> ps ) ) -> ( ( ph -> ps ) -> ( ch -> ps ) ) ) ) -> ( ( ( ( ps -> th ) -> ph ) -> ta ) -> ( ( ( ( ( ps -> th ) -> ph ) -> ta ) -> ( ch -> ps ) ) -> ( ( ph -> ps ) -> ( ch -> ps ) ) ) ) ) |
| 4 |
2 3
|
ax-mp |
|- ( ( ( ( ps -> th ) -> ph ) -> ta ) -> ( ( ( ( ( ps -> th ) -> ph ) -> ta ) -> ( ch -> ps ) ) -> ( ( ph -> ps ) -> ( ch -> ps ) ) ) ) |
| 5 |
|
impsingle-step15 |
|- ( ( ( ( ( ps -> th ) -> ph ) -> ta ) -> ( ( ( ( ( ps -> th ) -> ph ) -> ta ) -> ( ch -> ps ) ) -> ( ( ph -> ps ) -> ( ch -> ps ) ) ) ) -> ( ( ( ( ps -> th ) -> ph ) -> ( ( ph -> ps ) -> ( ch -> ps ) ) ) -> ( ( ( ( ( ps -> th ) -> ph ) -> ta ) -> ( ch -> ps ) ) -> ( ( ph -> ps ) -> ( ch -> ps ) ) ) ) ) |
| 6 |
4 5
|
ax-mp |
|- ( ( ( ( ps -> th ) -> ph ) -> ( ( ph -> ps ) -> ( ch -> ps ) ) ) -> ( ( ( ( ( ps -> th ) -> ph ) -> ta ) -> ( ch -> ps ) ) -> ( ( ph -> ps ) -> ( ch -> ps ) ) ) ) |
| 7 |
1 6
|
ax-mp |
|- ( ( ( ( ( ps -> th ) -> ph ) -> ta ) -> ( ch -> ps ) ) -> ( ( ph -> ps ) -> ( ch -> ps ) ) ) |
| 8 |
|
impsingle |
|- ( ( ( ( ( ( ps -> th ) -> ph ) -> ta ) -> ( ch -> ps ) ) -> ( ( ph -> ps ) -> ( ch -> ps ) ) ) -> ( ( ( ( ph -> ps ) -> ( ch -> ps ) ) -> ( ( ( ps -> th ) -> ph ) -> ta ) ) -> ( et -> ( ( ( ps -> th ) -> ph ) -> ta ) ) ) ) |
| 9 |
7 8
|
ax-mp |
|- ( ( ( ( ph -> ps ) -> ( ch -> ps ) ) -> ( ( ( ps -> th ) -> ph ) -> ta ) ) -> ( et -> ( ( ( ps -> th ) -> ph ) -> ta ) ) ) |