Metamath Proof Explorer


Theorem impsingle-step15

Description: Derivation of impsingle-step15 from ax-mp and impsingle . It is used as a lemma in proofs of imim1 and peirce from impsingle . It is Step 15 in Lukasiewicz, where it appears as 'CCCrqCspCCrpCsp' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion impsingle-step15 ( ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 impsingle ( ( ( 𝜃𝜆 ) → 𝜑 ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) )
2 impsingle ( ( ( 𝜏𝜎 ) → 𝜌 ) → ( ( 𝜌𝜏 ) → ( 𝜇𝜏 ) ) )
3 impsingle ( ( ( ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) → 𝜂 ) → ( ( 𝜃𝜆 ) → 𝜑 ) ) → ( ( ( ( 𝜃𝜆 ) → 𝜑 ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) ) )
4 impsingle ( ( ( ( 𝜒𝜃 ) → 𝜁 ) → ( 𝜑𝜓 ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) )
5 impsingle-step8 ( ( ( ( ( 𝜒𝜃 ) → 𝜁 ) → ( 𝜑𝜓 ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) ) → ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) ) )
6 4 5 ax-mp ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) )
7 impsingle ( ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) ) → ( ( ( ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) → 𝜑 ) → ( ( 𝜃𝜆 ) → 𝜑 ) ) )
8 6 7 ax-mp ( ( ( ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) → 𝜑 ) → ( ( 𝜃𝜆 ) → 𝜑 ) )
9 impsingle ( ( ( ( ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) → 𝜑 ) → ( ( 𝜃𝜆 ) → 𝜑 ) ) → ( ( ( ( 𝜃𝜆 ) → 𝜑 ) → ( ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) ) → ( ( ( ( 𝜃𝜆 ) → 𝜑 ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) ) ) )
10 8 9 ax-mp ( ( ( ( 𝜃𝜆 ) → 𝜑 ) → ( ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) ) → ( ( ( ( 𝜃𝜆 ) → 𝜑 ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) ) )
11 impsingle ( ( ( ( ( 𝜃𝜆 ) → 𝜑 ) → ( ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) ) → ( ( ( ( 𝜃𝜆 ) → 𝜑 ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) ) ) → ( ( ( ( ( ( 𝜃𝜆 ) → 𝜑 ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) ) → ( ( 𝜃𝜆 ) → 𝜑 ) ) → ( ( ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) → 𝜂 ) → ( ( 𝜃𝜆 ) → 𝜑 ) ) ) )
12 10 11 ax-mp ( ( ( ( ( ( 𝜃𝜆 ) → 𝜑 ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) ) → ( ( 𝜃𝜆 ) → 𝜑 ) ) → ( ( ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) → 𝜂 ) → ( ( 𝜃𝜆 ) → 𝜑 ) ) )
13 impsingle ( ( ( ( ( ( ( 𝜃𝜆 ) → 𝜑 ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) ) → ( ( 𝜃𝜆 ) → 𝜑 ) ) → ( ( ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) → 𝜂 ) → ( ( 𝜃𝜆 ) → 𝜑 ) ) ) → ( ( ( ( ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) → 𝜂 ) → ( ( 𝜃𝜆 ) → 𝜑 ) ) → ( ( ( ( 𝜃𝜆 ) → 𝜑 ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) ) ) → ( ( ( ( 𝜏𝜎 ) → 𝜌 ) → ( ( 𝜌𝜏 ) → ( 𝜇𝜏 ) ) ) → ( ( ( ( 𝜃𝜆 ) → 𝜑 ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) ) ) ) )
14 12 13 ax-mp ( ( ( ( ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) → 𝜂 ) → ( ( 𝜃𝜆 ) → 𝜑 ) ) → ( ( ( ( 𝜃𝜆 ) → 𝜑 ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) ) ) → ( ( ( ( 𝜏𝜎 ) → 𝜌 ) → ( ( 𝜌𝜏 ) → ( 𝜇𝜏 ) ) ) → ( ( ( ( 𝜃𝜆 ) → 𝜑 ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) ) ) )
15 3 14 ax-mp ( ( ( ( 𝜏𝜎 ) → 𝜌 ) → ( ( 𝜌𝜏 ) → ( 𝜇𝜏 ) ) ) → ( ( ( ( 𝜃𝜆 ) → 𝜑 ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) ) )
16 2 15 ax-mp ( ( ( ( 𝜃𝜆 ) → 𝜑 ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) ) )
17 1 16 ax-mp ( ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) ) → ( ( 𝜑𝜃 ) → ( 𝜒𝜃 ) ) )