Metamath Proof Explorer


Theorem impsingle-step15

Description: Derivation of impsingle-step15 from ax-mp and impsingle . It is used as a lemma in proofs of imim1 and peirce from impsingle . It is Step 15 in Lukasiewicz, where it appears as 'CCCrqCspCCrpCsp' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion impsingle-step15 φψχθφθχθ

Proof

Step Hyp Ref Expression
1 impsingle θλφφθχθ
2 impsingle τσρρτμτ
3 impsingle φθχθηθλφθλφφθχθφψχθφθχθ
4 impsingle χθζφψφψχθφθχθ
5 impsingle-step8 χθζφψφψχθφθχθφψφψχθφθχθ
6 4 5 ax-mp φψφψχθφθχθ
7 impsingle φψφψχθφθχθφψχθφθχθφθλφ
8 6 7 ax-mp φψχθφθχθφθλφ
9 impsingle φψχθφθχθφθλφθλφφψχθφθχθθλφφθχθφψχθφθχθ
10 8 9 ax-mp θλφφψχθφθχθθλφφθχθφψχθφθχθ
11 impsingle θλφφψχθφθχθθλφφθχθφψχθφθχθθλφφθχθφψχθφθχθθλφφθχθηθλφ
12 10 11 ax-mp θλφφθχθφψχθφθχθθλφφθχθηθλφ
13 impsingle θλφφθχθφψχθφθχθθλφφθχθηθλφφθχθηθλφθλφφθχθφψχθφθχθτσρρτμτθλφφθχθφψχθφθχθ
14 12 13 ax-mp φθχθηθλφθλφφθχθφψχθφθχθτσρρτμτθλφφθχθφψχθφθχθ
15 3 14 ax-mp τσρρτμτθλφφθχθφψχθφθχθ
16 2 15 ax-mp θλφφθχθφψχθφθχθ
17 1 16 ax-mp φψχθφθχθ