Metamath Proof Explorer


Theorem impsingle-step20

Description: Derivation of impsingle-step20 from ax-mp and impsingle . It is used as a lemma in proofs of imim1 and peirce from impsingle . It is Step 20 in Lukasiewicz, where it appears as 'CCCCrppCspCCCpqrCsp' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion impsingle-step20 φψψχψψθφχψ

Proof

Step Hyp Ref Expression
1 impsingle-step19 χψθφψψθφχψ
2 impsingle τζσστρτ
3 impsingle ψθφχψηχψθφψχψθφψψθφχψφψψχψψθφχψ
4 impsingle χψτφψψφψψχψψθφχψ
5 impsingle-step8 χψτφψψφψψχψψθφχψφψψφψψχψψθφχψ
6 4 5 ax-mp φψψφψψχψψθφχψ
7 impsingle φψψφψψχψψθφχψφψψχψψθφχψφψχψθφψ
8 6 7 ax-mp φψψχψψθφχψφψχψθφψ
9 impsingle φψψχψψθφχψφψχψθφψχψθφψφψψχψψθφχψχψθφψψθφχψφψψχψψθφχψ
10 8 9 ax-mp χψθφψφψψχψψθφχψχψθφψψθφχψφψψχψψθφχψ
11 impsingle χψθφψφψψχψψθφχψχψθφψψθφχψφψψχψψθφχψχψθφψψθφχψφψψχψψθφχψχψθφψψθφχψηχψθφψ
12 10 11 ax-mp χψθφψψθφχψφψψχψψθφχψχψθφψψθφχψηχψθφψ
13 impsingle χψθφψψθφχψφψψχψψθφχψχψθφψψθφχψηχψθφψψθφχψηχψθφψχψθφψψθφχψφψψχψψθφχψτζσστρτχψθφψψθφχψφψψχψψθφχψ
14 12 13 ax-mp ψθφχψηχψθφψχψθφψψθφχψφψψχψψθφχψτζσστρτχψθφψψθφχψφψψχψψθφχψ
15 3 14 ax-mp τζσστρτχψθφψψθφχψφψψχψψθφχψ
16 2 15 ax-mp χψθφψψθφχψφψψχψψθφχψ
17 1 16 ax-mp φψψχψψθφχψ